32 research outputs found

    GIS Use in Oral Rabies Vaccine Programs

    Get PDF
    Frequent human and domestic animal exposures to rabid wildlife have raised the public\u27s awareness, leading to an increase in the number of wildlife submissions for rabies testing as well as an increase in the number of people requiring post exposure prophylaxis treatment. During 1998 and 1999, the Health and Human Services Department of a densely populated urban/suburban county in Virginia received a total of 955 animal submissions for rabies testing. Wildlife accounted for 714 of the submissions. Seventy-nine of the submitted wildlife were found dead, 445 were killed or euthanized for testing (190 unknown). Of the wildlife submissions,152 (21%) were positive, including 100 of 178 raccoons submitted. Human exposure, potentially requiring post-exposure prophylaxis, was recorded in 22 positive and 334 negative rabies submissions. Information was not available for 9 positive and 135 negative submissions; human exposure did not occur with the remaining submissions. To reduce the public\u27s risk of exposure to rabid animals, the County is developing a program to distribute oral rabies vaccine to raccoons. To increase the precision of vaccine delivery to raccoons, we propose the use of geographical information systems (GIS) as a method for selecting vaccination sites. Results from trapping and tracking studies, along with hydrographic and vegetation data, were utilized in the development of GIS generated vaccine distribution maps. Also factored in was human activity, commerce, residential housing density, competition by companion animals for vaccine bait, the location of refuse facilities, and property ownership. It is expected that this GIS supported approach will improve the efficiency of the program by lessening the cost while increasing the number of raccoons immunized. The resulting decrease in the incidence of rabies will lead to fewer human exposures to rabid wildlife, a decrease in the number of healthy wildlife euthanized for testing, and a decrease in the number of people requiring post-exposure prophylaxis treatment

    Two amino acid mutations in the capsid protein of type 2 porcine circovirus (PCV2) enhanced PCV2 replication in vitro and attenuated the virus in vivo

    Get PDF
    Porcine circovirus type 2 (PCV2) is the primary causative agent of postweaning multisystemic wasting syndrome (PMWS) in pigs. To identify potential genetic determinants for virulence and replication, we serially passaged a PCV2 isolate 120 times in PK-15 cells. The viruses harvested at virus passages 1 (VP1) and 120 (VP120) were biologically, genetically, and experimentally characterized. The PCV2 VP120 virus replicated in PK-15 cells to a titer similar to that of the PK-15 cell line-derived nonpathogenic PCV1 but replicated more efficiently than PCV2 VP1 with a difference of about 1 log unit in the titers. The complete genomic sequences of viruses at passages 0, 30, 60, 90, and 120 were determined. After 120 passages, only two nucleotide mutations were identified in the entire genome, and both were located in the capsid gene: the mutations were located at nucleotide positions 328 (C328G) and 573 (A573C). The C328G mutation, in which a proline at position 110 of the capsid protein changed to an alanine (P110A), occurred at passage 30 and remained in the subsequent passages. The second mutation, A573C, resulting in a change from an arginine to a serine at position 191 (R191S), appeared at passage 120. To experimentally characterize the VP120 virus, 31 specific-pathogen-free pigs were randomly divided into three groups. Ten pigs in group 1 received phosphate-buffered saline as negative controls. Each pig in group 2 (11 pigs) was inoculated intramuscularly and intranasally with 10(4.9) 50% tissue culture infective doses (TCID(50)) of PCV2 VP120. Each pig in group 3 (10 pigs) was similarly inoculated with 10(4.9) TCID(50) of PCV2 VP1. Viremia was detected in 9 of 10 pigs in the PCV2 VP1 group with a mean duration of 3 weeks, but in only 4 of 11 pigs in the PCV2 VP120 group with a mean duration of 1.6 weeks. The PCV2 genomic copy numbers in serum in the PCV2 VP1 group were significantly higher than those in the PCV2 VP120 group (P < 0.0001). Gross and histopathologic lesions in pigs inoculated with PCV2 VP1 were more severe than those inoculated with PCV2 VP120 at both day 21 and 42 necropsies (P = 0.0032 and P = 0.0274, respectively). Taken together, the results from this study indicated that the P110A and R191S mutations in the capsid of PCV2 enhanced the growth ability of PCV2 in vitro and attenuated the virus in vivo. This finding has important implications for PCV2 vaccine development

    Does having a cat in your house increase your risk of catching COVID-19?

    Get PDF
    [EN]Due to the zoonotic origin of SARS-Coronavirus 2 (SARS-CoV-2), the potential for its transmission from humans back to animals and the possibility that it might establish ongoing infection pathways in other animal species has been discussed. Cats are highly susceptible to SARS-CoV-2 and were shown experimentally to transmit the virus to other cats. Infection of cats has been widely reported. Domestic cats in COVID-19-positive households could therefore be a part of a human to animal to human transmission pathway. Here, we report the results of a qualitative risk assessment focusing on the potential of cat to human transmission in such settings. The assessment was based on evidence available by October 2021. After the introduction of SARS-CoV-2 to a household by a human, cats may become infected and infected cats may pose an additional infection risk for other members of the household. In order to assess this additional risk qualitatively, expert opinion was elicited within the framework of a modified Delphi procedure. The conclusion was that the additional risk of infection of an additional person in a household associated with keeping a domestic cat is very low to negligible, depending on the intensity of cat-to-human interactions. The separation of cats from humans suffering from SARS-CoV-2 infection should contribute to preventing further transmission.SIThis work was funded by the German Federal Ministry of Education and Research within the COVMon Project, being part of the InfectControl2020 Initiative (BMBF grant no. 03COV16D)

    A Model To Estimate the Optimal Sample Size for Microbiological Surveys

    No full text
    Estimating optimal sample size for microbiological surveys is a challenge for laboratory managers. When insufficient sampling is conducted, biased inferences are likely; however, when excessive sampling is conducted valuable laboratory resources are wasted. This report presents a statistical model for the estimation of the sample size appropriate for the accurate identification of the bacterial subtypes of interest in a specimen. This applied model for microbiology laboratory use is based on a Bayesian mode of inference, which combines two inputs: (ii) a prespecified estimate, or prior distribution statement, based on available scientific knowledge and (ii) observed data. The specific inputs for the model are a prior distribution statement of the number of strains per specimen provided by an informed microbiologist and data from a microbiological survey indicating the number of strains per specimen. The model output is an updated probability distribution of strains per specimen, which can be used to estimate the probability of observing all strains present according to the number of colonies that are sampled. In this report two scenarios that illustrate the use of the model to estimate bacterial colony sample size requirements are presented. In the first scenario, bacterial colony sample size is estimated to correctly identify Campylobacter amplified restriction fragment length polymorphism types on broiler carcasses. The second scenario estimates bacterial colony sample size to correctly identify Salmonella enterica serotype Enteritidis phage types in fecal drag swabs from egg-laying poultry flocks. An advantage of the model is that as updated inputs from ongoing surveys are incorporated into the model, increasingly precise sample size estimates are likely to be made

    A Chimeric Porcine Circovirus (PCV) with the Immunogenic Capsid Gene of the Pathogenic PCV Type 2 (PCV2) Cloned into the Genomic Backbone of the Nonpathogenic PCV1 Induces Protective Immunity against PCV2 Infection in Pigs

    Get PDF
    Porcine circovirus type 2 (PCV2) is associated with postweaning multisystemic wasting syndrome in pigs, whereas PCV1 is nonpathogenic. We previously demonstrated that a chimeric PCV1-2 virus (with the immunogenic capsid gene of PCV2 cloned into the backbone of PCV1) induces an antibody response to the PCV2 capsid protein and is attenuated in pigs. Here, we report that the attenuated chimeric PCV1-2 induces protective immunity to wild-type PCV2 challenge in pigs. A total of 48 specific-pathogen-free piglets were randomly and equally assigned to four groups of 12 pigs each. Pigs in group 1 were vaccinated by intramuscular injection with 200 μg of the chimeric PCV1-2 infectious DNA clone. Pigs in group 2 were vaccinated by intralymphoid injection with 200 μg of a chimeric PCV1-2 infectious DNA clone. Pigs in group 3 were vaccinated by intramuscular injection with 10(3.5) 50% tissue culture infective doses (TCID(50)) of the chimeric PCV1-2 live virus. Pigs in group 4 were not vaccinated and served as controls. By 42 days postvaccination (DPV), the majority of pigs had seroconverted to PCV2 capsid antibody. At 42 DPV, all pigs were challenged intranasally and intramuscularly with 2 × 10(4.5) TCID(50) of a wild-type pathogenic PCV2 virus. By 21 days postchallenge (DPC), 9 out of the 12 group 4 pigs were viremic for PCV2. Vaccinated animals in groups 1 to 3 had no detectable PCV2 viremia after challenge. At 21 DPC the lymph nodes in the nonvaccinated pigs were larger (P < 0.05) than those of vaccinated pigs. The PCV2 genomic copy loads in lymph nodes were reduced (P < 0.0001) in vaccinated pigs. Moderate amounts of PCV2 antigen were detected in most lymphoid tissues of nonvaccinated pigs but in only 1 of 36 vaccinated pigs. Mild-to-severe lymphoid depletion and histiocytic replacement were detected in lymphoid tissues in the majority of nonvaccinated group 4 pigs but in only a few vaccinated group 1 to 3 pigs. The data from this study indicated that when given intramuscularly in pigs, the attenuated chimeric PCV1-2 live virus, as well as the chimeric PCV1-2 infectious DNA clone, induces protective immunity against PCV2 infection and could potentially serve as an effective vaccine

    Systematic Pathogenesis and Replication of Avian Hepatitis E Virus in Specific-Pathogen-Free Adult Chickens

    No full text
    Hepatitis E virus (HEV) is an important human pathogen. Due to the lack of a cell culture system and a practical animal model for HEV, little is known about its pathogenesis and replication. The discovery of a strain of HEV in chickens, designated avian HEV, prompted us to evaluate chickens as a model for the study of HEV. Eighty-five 60-week-old specific-pathogen-free chickens were randomly divided into three groups. Group 1 chickens (n = 28) were each inoculated with 5 × 10(4.5) 50% chicken infectious doses of avian HEV by the oronasal route, group 2 chickens (n = 29) were each inoculated with the same dose by the intravenous (i.v.) route, and group 3 chickens (n = 28) were not inoculated and were used as controls. Two chickens from each group were necropsied at 1, 3, 5, 7, 10, 13, 16, 20, 24, 28, 35, and 42 days postinoculation (dpi), and the remaining chickens were necropsied at 56 dpi. Serum, fecal, and various tissue samples, including liver and spleen samples, were collected at each necropsy for pathological and virological testing. By 21 dpi, all oronasally and i.v. inoculated chickens had seroconverted. Fecal virus shedding was detected variably from 1 to 20 dpi for the i.v. group and from 10 to 56 dpi for the oronasal group. Avian HEV RNA was detected in serum, bile, and liver samples from both i.v. and oronasally inoculated chickens. Gross liver lesions, characterized by subcapsular hemorrhages or enlargement of the right intermediate lobe, were observed in 7 of 28 oronasally and 7 of 29 i.v. inoculated chickens. Microscopic liver lesions were mainly lymphocytic periphlebitis and phlebitis. The lesion scores were higher for oronasal (P = 0.0008) and i.v. (P = 0.0029) group birds than for control birds. Slight elevations of the plasma liver enzyme lactate dehydrogenase were observed in infected chickens. The results indicated that chickens are a useful model for studying HEV replication and pathogenesis. This is the first report of HEV transmission via its natural route in a homologous animal model

    Influence of age on surfactant isolated from healthy horses\ud maintained on pasture

    No full text
    Background: Surfactant alterations are described in horses after exercise, anesthesia, and prolonged transport, in horses with recurrent airway obstruction, and in neonatal foals. The effect of horse age or bronchoalveolar lavage fluid (BALF) sample characteristics on surfactant is unknown.\ud \ud Objectives: To evaluate surfactant phospholipid composition and function in healthy horses, and to investigate the influence of age and BALF sample characteristics on surfactant.\ud \ud Animals: Seventeen healthy horses 6–25 years of age maintained on pasture year-round.\ud \ud Methods: BALF was collected by standard procedures and was assessed for recovery volume, nucleated cell count (NCC),\ud and cytology. Cell-free BALF was separated into crude surfactant pellet (CSP) and surfactant supernatant (Supe) by ultracentrifugation. Phospholipid and protein content were determined from both fractions. CSP phospholipid composition was analyzed by high-performance liquid chromatography with an evaporative light scatter detector. Surface tension of CSP was evaluated with a pulsating bubble surfactometer. Regression analysis was used to evaluate associations between age, BALF sample characteristics, and surfactant variables. \ud \ud Results: Results and conclusions were derived from 15 horses. Increasing age was associated with decreased phospholipid content in CSP but not Supe. Age did not affect protein content of CSP or Supe, or surfactant phospholipid composition or function. Age-related surfactant changes were unaffected by BALF recovery percentage, NCC, and cytological profile.\ud \ud Conclusions and Clinical Importance: Older horses have decreased surfactant phospholipid content, which might be because of age-related pulmonary changes. Surfactant composition is unaffected by BALF sample characteristics at a BALF recovery percentage of at least 50%
    corecore