42,187 research outputs found
Surface reconstruction, premelting, and collapse of open-cell nanoporous Cu via thermal annealing
We systematic investigate the collapse of a set of open-cell nanoporous Cu
(np-Cu) with the same porosity and shapes, but different specific surface area,
during thermal annealing, via performing large-scale molecular dynamics
simulations. Surface premelting is dominated in their collapses, and surface
premelting temperatures reduce linearly with the increase of specific surface
area. The collapse mechanisms are different for np-Cu with different specific
surface area. If the specific surface area less than a critical value (
2.38 nm), direct surface premelting, giving rise to the transition of
ligaments from solid to liquid states, is the cause to facilitate falling-down
of np-Cu during thermal annealing. While surface premelting and following
recrystallization, accelerating the sloughing of ligaments and annihilation of
pores, is the other mechanism, as exceeding the critical specific surface area.
The recrystallization occurs at the temperatures below supercooling, where
liquid is instable and instantaneous. Thermal-induced surface reconstruction
prompts surface premelting via facilitating local "disordering" and "chaotic"
at the surface, which are the preferred sites for surface premelting
Recommended from our members
Dynamic Behavior of Precast Concrete Beam-Column Sub-Assemblages with High Performance Connections Subjected to Sudden Column Removal Scenario
Unbonded posttensioned precast concrete (UPPC) structure has shown its excellent aseismic performance in laboratory tests and earthquake investigation. However, the progressive collapse behavior of UPPC subjected to column removal scenario is still unclear. To fill this knowledge gap, two 1/2 scaled UPPC beam-column sub-assemblages were tested under a penultimate column removal scenario. The dynamic test results indicated that UPPC sub-assemblages have desirable load redistribution capacity to mitigate progressive collapse. The failure modes of the sub-assemblages observed in dynamic test were quite similar to that in static counterparts
Exchange Bias in Ferromagnetic/Compensated Antiferromagnetic Bilayers
By means of micromagnetic spin dynamics calculations, a quantitative
calculation is carried out to explore the mechanism of exchange bias (EB) in
ferromagnetic (FM)/compensated antiferromagnetic (AFM) bilayers. The
antiferromagnets with low and high Neel temperatures have been both considered,
and the crossover from negative to positive EB is found only in the case with
low Neel temperature. We propose that the mechanism of EB in FM/compensated AFM
bilayers is due to the symmetry broken of AFM that yields some net
ferromagnetic components.Comment: 3figure
Olig2/Plp-positive progenitor cells give rise to Bergmann glia in the cerebellum.
NG2 (nerve/glial antigen2)-expressing cells represent the largest population of postnatal progenitors in the central nervous system and have been classified as oligodendroglial progenitor cells, but the fate and function of these cells remain incompletely characterized. Previous studies have focused on characterizing these progenitors in the postnatal and adult subventricular zone and on analyzing the cellular and physiological properties of these cells in white and gray matter regions in the forebrain. In the present study, we examine the types of neural progeny generated by NG2 progenitors in the cerebellum by employing genetic fate mapping techniques using inducible Cre-Lox systems in vivo with two different mouse lines, the Plp-Cre-ER(T2)/Rosa26-EYFP and Olig2-Cre-ER(T2)/Rosa26-EYFP double-transgenic mice. Our data indicate that Olig2/Plp-positive NG2 cells display multipotential properties, primarily give rise to oligodendroglia but, surprisingly, also generate Bergmann glia, which are specialized glial cells in the cerebellum. The NG2+ cells also give rise to astrocytes, but not neurons. In addition, we show that glutamate signaling is involved in distinct NG2+ cell-fate/differentiation pathways and plays a role in the normal development of Bergmann glia. We also show an increase of cerebellar oligodendroglial lineage cells in response to hypoxic-ischemic injury, but the ability of NG2+ cells to give rise to Bergmann glia and astrocytes remains unchanged. Overall, our study reveals a novel Bergmann glia fate of Olig2/Plp-positive NG2 progenitors, demonstrates the differentiation of these progenitors into various functional glial cell types, and provides significant insights into the fate and function of Olig2/Plp-positive progenitor cells in health and disease
Quantum secret sharing between m-party and n-party with six states
We propose a quantum secret sharing scheme between -party and -party
using three conjugate bases, i.e. six states. A sequence of single photons,
each of which is prepared in one of the six states, is used directly to encode
classical information in the quantum secret sharing process. In this scheme,
each of all members in group 1 choose randomly their own secret key
individually and independently, and then directly encode their respective
secret information on the states of single photons via unitary operations, then
the last one (the th member of group 1) sends of the resulting qubits
to each of group 2. By measuring their respective qubits, all members in group
2 share the secret information shared by all members in group 1. The secret
message shared by group 1 and group 2 in such a way that neither subset of each
group nor the union of a subset of group 1 and a subset of group 2 can extract
the secret message, but each whole group (all the members of each group) can.
The scheme is asymptotically 100% in efficiency. It makes the Trojan horse
attack with a multi-photon signal, the fake-signal attack with EPR pairs, the
attack with single photons, and the attack with invisible photons to be
nullification. We show that it is secure and has an advantage over the one
based on two conjugate bases. We also give the upper bounds of the average
success probabilities for dishonest agent eavesdropping encryption using the
fake-signal attack with any two-particle entangled states. This protocol is
feasible with present-day technique.Comment: 7 page
Circular quantum secret sharing
A circular quantum secret sharing protocol is proposed, which is useful and
efficient when one of the parties of secret sharing is remote to the others who
are in adjacent, especially the parties are more than three. We describe the
process of this protocol and discuss its security when the quantum information
carrying is polarized single photons running circularly. It will be shown that
entanglement is not necessary for quantum secret sharing. Moreover, the
theoretic efficiency is improved to approach 100% as almost all the instances
can be used for generating the private key, and each photon can carry one bit
of information without quantum storage. It is straightforwardly to utilize this
topological structure to complete quantum secret sharing with multi-level
two-particle entanglement in high capacity securely.Comment: 7 pages, 2 figure
Efficient symmetric multiparty quantum state sharing of an arbitrary m-qubit state
We present a scheme for symmetric multiparty quantum state sharing of an
arbitrary -qubit state with Greenberger-Horne-Zeilinger states following
some ideas from the controlled teleportation [Phys. Rev. A \textbf{72}, 02338
(2005)]. The sender Alice performs Bell-state measurements on her
particles and the controllers need only to take some single-photon product
measurements on their photons independently, not Bell-state measurements, which
makes this scheme more convenient than the latter. Also it does not require the
parties to perform a controlled-NOT gate on the photons for reconstructing the
unknown -qubit state and it is an optimal one as its efficiency for qubits
approaches the maximal value.Comment: 6 pages, no figures; It simplifies the process for sharing an
arbitrary m-qubit state in Phys. Rev. A 72, 022338 (2005) (quant-ph/0501129
Probabilistic teleportation of unknown two-particle state via POVM
We propose a scheme for probabilistic teleportation of unknown two-particle
state with partly entangled four-particle state via POVM. In this scheme the
teleportation of unknown two-particle state can be realized with certain
probability by performing two Bell state measurements, a proper POVM and a
unitary transformation.Comment: 5 pages, no figur
- …
