151 research outputs found

    Inhibition of Trophoblast-Induced Spiral Artery Remodeling Reduces Placental Perfusion in Rat Pregnancy.

    Get PDF
    Rats harboring the human angiotensinogen and human renin genes develop preeclamptic features in pregnancy. The preeclamptic rats exhibit a deeper trophoblast invasion associated with a reduced resistance index by uterine Doppler. Doxycycline inhibits matrix metalloproteinase activity. We tested the hypothesis that matrix metalloproteinase inhibition reduces trophoblast invasion with subsequent changes in placental perfusion. Preeclamptic and pregnant control Sprague-Dawley rats were treated with doxycycline (30 mg/kg of body weight orally) from gestational day 12 until day 18. Placental perfusion was assessed using a micromarker contrast agent. The animals were euthanized on day 18 of pregnancy; biometric data were acquired, and trophoblast invasion was analyzed. Doxycycline resulted in intrauterine growth retardation and lighter placentas in both groups. Maternal body weight was not affected. As shown earlier, preeclamptic rats exhibited a deeper endovascular trophoblast invasion. However, doxycycline treatment reduced trophoblast invasion in the preeclamptic rats. The physiological spiral artery remodeling, as assessed by the deposition of fibrinoid and α-actin in the spiral artery contour, was significantly reduced by doxycycline. The vascularity index, as assessed by perfusion measurement of the placenta, was reduced after doxycycline treatment in preeclamptic rats. Thus, matrix metalloproteinase inhibition with doxycycline leads to reduced trophoblast invasion and associated reduced placental perfusion. These studies are the first to show that reducing trophoblast-induced vascular remodeling decreases subsequent placental perfusion. Our model allows the study of dysregulated trophoblast invasion and vascular remodeling in vivo to gain important insights into preeclampsia-related mechanisms

    Placental DAPK1 and autophagy marker LC3B-II are dysregulated by TNF-α in a gestational age-dependent manner

    Get PDF
    Autophagy, a cell-survival process responsible for degradation of protein aggregates and damaged organelles, is increasingly recognized as another mechanism essential for human placentation. A substantial body of experiments suggests inflammation and oxidative stress as the underlying stimuli for altered placental autophagy, giving rise to placenta dysfunction and pregnancy pathologies. Here, the hypothesis is tested whether or not pro-inflammatory cytokines interleukin (IL)-6 and tumor necrosis factor (TNF)-{alpha} are able to influence the expression profile of autophagy genes in human first-trimester villous placenta. Autophagy-focused qPCR arrays identified substantial downregulation of death-associated protein kinase 1 (DAPK1) in first-trimester placental explants in response to IL-6 and TNF-{alpha}, respectively. Immunohistochemistry of placental explants detected considerable DAPK1 staining in placental macrophages, villous cytotrophoblasts and less intense in the syncytiotrophoblast. Both immunohistochemistry and Western blot showed decreased DAPK1 protein in TNF-{alpha}-treated placental explants compared to control. On cellular level, DAPK1 expression decreased in SGHPL-4 trophoblasts in response to TNF-{alpha}. Observed changes in the expression profile of autophagy-related genes were reflected by significantly decreased lipidation of autophagy marker microtubule-associated protein light chain 3 beta (LC3B-II) in first trimester placental explants in response to TNF-{alpha}. Analysis of TNF-{alpha}-treated term placental explants showed decreased DAPK1 protein, whereas in contrast to first-trimester LC3B expression and lipidation increased. Immunohistochemistry of placental tissues from early-onset preeclampsia (PE) showed less DAPK1 staining, when compared to controls. Accordingly, DAPK1 mRNA and protein were decreased in primary trophoblasts isolated from early-onset PE, while LC3B-I and -II were increased. Results from this study suggest that DAPK1, a regulator of apoptosis, autophagy and programmed necrosis, decreases in human placenta in response to elevated maternal TNF-{alpha}, irrespective of gestational age. In contrast, TNF-{alpha} differentially regulates levels of autophagy marker LC3B in human placenta over gestation

    Speckle tracking echocardiography: new ways of translational approaches in preeclampsia to detect cardiovascular dysfunction

    Get PDF
    Several studies have shown that women with a preeclamptic pregnancy exhibit an increased risk of cardiovascular disease. However, the underlying molecular mechanisms are unknown. Animal models are essential to investigate the causes of this increased risk and have the ability to assess possible preventive and therapeutic interventions. Using the latest technologies such as speckle tracking echocardiography (STE), it is feasible to map subclinical changes in cardiac diastolic and systolic function as well as structural changes of the maternal heart. The aim of this work is to compare cardiovascular changes in an established transgenic rat model with preeclampsia-like pregnancies with findings from human preeclamptic pregnancies by STE. The same algorithms were used to evaluate and compare the changes in echos of human and rodents. Parameters of functionality like global longitudinal strain (animal -23.54 ± 1.82 % vs. -13.79 ± 0.57 %, human -20.60 ± 0.47 % vs. -15.45 ± 1.55 %) as well as indications of morphological changes like relative wall thickness (animal 0.20 ± 0.01 vs. 0.25 ± 0.01, human 0.34 ± 0.01 vs. 0.40 ± 0.02) are significantly altered in both species after preeclamptic pregnancies. Thus, the described rat model simulates the human situation quite well and is a valuable tool for future investigations regarding cardiovascular changes. STE is a unique technique which can be applied in animal models and human with a high potential to uncover cardiovascular maladaptation and subtle pathologies

    The angiotensin II type I receptor contributes to impaired cerebral blood flow autoregulation caused by placental ischemia in pregnant rats

    Get PDF
    BACKGROUND: Placental ischemia and hypertension, characteristic features of preeclampsia, are associated with impaired cerebral blood flow (CBF) autoregulation and cerebral edema. However, the factors that contribute to these cerebral abnormalities are not clear. Several lines of evidence suggest that angiotensin II can impact cerebrovascular function; however, the role of the renin angiotensin system in cerebrovascular function during placental ischemia has not been examined. We tested whether the angiotensin type 1 (AT1) receptor contributes to impaired CBF autoregulation in pregnant rats with placental ischemia caused by surgically reducing uterine perfusion pressure. METHODS: Placental ischemic or sham operated rats were treated with vehicle or losartan from gestational day (GD) 14 to 19 in the drinking water. On GD 19, we assessed CBF autoregulation in anesthetized rats using laser Doppler flowmetry. RESULTS: Placental ischemic rats had impaired CBF autoregulation that was attenuated by treatment with losartan. In addition, we examined whether an agonistic autoantibody to the AT1 receptor (AT1-AA), reported to be present in preeclamptic women, contributes to impaired CBF autoregulation. Purified rat AT1-AA or vehicle was infused into pregnant rats from GD 12 to 19 via mini-osmotic pumps after which CBF autoregulation was assessed. AT1-AA infusion impaired CBF autoregulation but did not affect brain water content. CONCLUSIONS: These results suggest that the impaired CBF autoregulation associated with placental ischemia is due, at least in part, to activation of the AT1 receptor and that the RAS may interact with other placental factors to promote cerebrovascular changes common to preeclampsia

    CD4(+) T cells play a critical role in mediating hypertension in response to placental ischemia

    Get PDF
    Similar to preeclamptic women, hypertension in the chronic Reduced Uterine Perfusion Pressure Rat Model Of Preeclampsia (RUPP) is associated with increased CD4+ T cells, cytokines, sFlt-1 and agonistic autoantibodies to the AngII receptor (AT1-AA). We examined the effect inhibition of T cell co-stimulation in RUPP rats treated with (A) (abatacept, 250 mg/kg, infused i.v. at gestation day 13), on hypertension and sFlt-1, TNF-alpha and AT1-AA. RUPP surgical procedure was performed on day 14. On day 19 MAP increased from 94+2 mmHg in Normal Pregnant (NP) to 123 +/- 3 mmHg in RUPP control rats. This response was attenuated by Abatacept, MAP was 104 +/- 2 mmHg in RUPP +/- A, and 96 +/- 2 mmHg NP +/- A. Percent circulating CD4+ T cells were 66 +/- 3% in RUPPs compared to 55 +/- 3% NP rats (p<0.04) but were normalized in RUPP +/- A rats (54 +/- 3%). The twofold increase in TNF alpha seen in RUPPs (277 +/- 47 pg/ml) was decreased to 80 +/- 18 pg/ml in RUPP+A. Placental sFlt-1 was reduced 70 % to 151 +/- 28 in RUPP +/- A compared 488 +/- 61 pg/ml in RUPP (p<0.001). AT1-AA decreased from 20 +/- 0.8 bpm in control RUPP to 6 +/- 0.7 bpm in RUPP +/- A. We next determined the effect of RUPP in causing hypertension in pregnant T cell deficient rats by examining MAP in NP (123 +/- 5 mmHg) and RUPP athymic nude rats (123 +/- 7 mmHg). In the absence of T cells, hypertension in response to placental ischemia was completely abolished. Collectively these data indicate that CD4+ Tcells in response to placental ischemia play an important role in the pathophysiology of hypertension associated with preeclampsia

    Regulatory T cells ameliorate intrauterine growth retardation in a transgenic rat model for preeclampsia

    Get PDF
    Preeclampsia is a multisystemic syndrome during pregnancy that is often associated with intrauterine growth retardation. Immunologic dysregulation, involving T cells, is implicated in the pathogenesis. The aim of this study was to evaluate the effect of upregulating regulatory T cells in an established transgenic rat model for preeclampsia. Application of superagonistic monoclonal antibody for CD28 has been shown to effectively upregulate regulatory T cells. In the first protocol (treatment protocol), we applied 1 mg of CD28 superagonist or control antibody on days 11 and 15 of pregnancy. In the second protocol (prevention protocol), the superagonist or control antibody was applied on days 1, 5, and 9. Superagonist increased regulatory T cells in circulation and placenta from 8.49+/-2.09% of CD4-positive T cells to 23.50+/-3.05% and from 3.85+/-1.45% to 23.27+/-7.64%, respectively. Blood pressure and albuminuria (30.6+/-15.1 versus 14.6+/-5.5 mg/d) were similar in the superagonist or control antibody-treated preeclamptic group for both protocols. Rats treated with CD28 superagonist showed increased pup weights in the prevention protocol (2.66+/-0.03 versus 2.37+/-0.05 g) and in the treatment protocol (3.04+/-0.04 versus 2.54+/-0.1 g). Intrauterine growth retardation, calculated by brain:liver weight ratio, was also decreased by the superagonist in both protocols. Further analysis of brain development revealed a 20% increase in brain volume by the superagonist. Induction of regulatory T cells in the circulation and the uteroplacental unit in an established preeclamptic rat model had no influence on maternal hypertension and proteinuria. However, it substantially improved fetal outcome by ameliorating intrauterine growth retardation

    Kidney injury caused by preeclamptic pregnancy recovers postpartum in a transgenic rat model

    Get PDF
    Preeclampsia (PE) is characterized by the onset of hypertension (≥140/90 mmHg) and presence of proteinuria (>300 mg/L/24 h urine) or other maternal organ dysfunctions. During human PE, renal injuries have been observed. Some studies suggest that women with PE diagnosis have an increased risk to develop renal diseases later in life. However, in human studies PE as a single cause of this development cannot be investigated. Here, we aimed to investigate the effect of PE on postpartum renal damage in an established transgenic PE rat model. Female rats harboring the human-angiotensinogen gene develop a preeclamptic phenotype after mating with male rats harboring the human-renin gene, but are normotensive before and after pregnancy. During pregnancy PE rats developed mild tubular and glomerular changes assessed by histologic analysis, increased gene expression of renal damage markers such as kidney injury marker 1 and connective-tissue growth factor, and albuminuria compared to female wild-type rats (WT). However, four weeks postpartum, most PE-related renal pathologies were absent, including albuminuria and elevated biomarker expression. Only mild enlargement of the glomerular tuft could be detected. Overall, the glomerular and tubular function were affected during pregnancy in the transgenic PE rat. However, almost all these pathologies observed during PE recovered postpartum

    Закономерности изменения физико-механических свойств сплава Zr-1%Nb при комплексном ионно-плазменном модифицировании поверхности и наводороживании

    Get PDF
    В работе были изучены особенности изменения морфологии, структуры и физико-механических свойств циркониевого сплава Zr-1%Nb, подвергнутого комплексному ионно-плазменному модифицированию поверхности методами плазменно-иммерсионной ионной имплантации титана и осаждения покрытий нитрида титана. Показана высокая эффективность защиты сформированных структур от проникновения водорода в циркониевый сплав. Изучены механизмы сорбции и захвата водорода в титансодержащем модифицированном слое.In the present work, the features of the change in the morphology, structure, and physico-mechanical properties of zirconium alloy Zr-1%Nb subjected to complex ion-plasma surface modification by the methods of plasma-immersion titanium ion implantation and deposition of titanium nitride coatings were studied. The high protective properties of the formed structures against hydrogen permeation into the zirconium alloy is shown. Mechanisms of sorption and capture of hydrogen in a titanium-doped modified layer are studied

    High salt reduces the activation of IL-4- and IL-13-stimulated macrophages

    Get PDF
    A high intake of dietary salt (NaCl) has been implicated in the development of hypertension, chronic inflammation, and autoimmune diseases. We have recently shown that salt has a proinflammatory effect and boosts the activation of Th17 cells and the activation of classical, LPS-induced macrophages (M1). Here, we examined how the activation of alternative (M2) macrophages is affected by salt. In stark contrast to Th17 cells and M1 macrophages, high salt blunted the alternative activation of BM-derived mouse macrophages stimulated with IL-4 and IL-13, M(IL-4+IL-13) macrophages. Salt-induced reduction of M(IL-4+IL-13) activation was not associated with increased polarization toward a proinflammatory M1 phenotype. In vitro, high salt decreased the ability of M(IL-4+IL-13) macrophages to suppress effector T cell proliferation. Moreover, mice fed a high salt diet exhibited reduced M2 activation following chitin injection and delayed wound healing compared with control animals. We further identified a high salt-induced reduction in glycolysis and mitochondrial metabolic output, coupled with blunted AKT and mTOR signaling, which indicates a mechanism by which NaCl inhibits full M2 macrophage activation. Collectively, this study provides evidence that high salt reduces noninflammatory innate immune cell activation and may thus lead to an overall imbalance in immune homeostasis
    corecore