48,653 research outputs found
SU(4) Theory for Spin Systems with Orbital Degeneracy
The isotropic limit of spin systems with orbital degeneracy is shown to have
global SU(4) symmetry. On many 2D lattices, the ground state does not posses
long range order, which may explain the observed spin liquid properties of
. In the SU(4) Neel ordered state, spin-spin correlations can be
antiferromagneitc between two neighboring sites with parallel magnetic moments.Comment: 11 pages, 2 figures. submitted to PR
A novel approach for quality control system using sensor fusion of infrared and visual image processing for laser sealing of food containers
This paper presents a new mechatronic approach of using infrared thermography combined with image processing for the quality control of a laser sealing process for food containers. The suggested approach uses an on-line infrared system to assess the heat distribution within the container seal in order to guarantee the integrity of the process. Visual image processing is then used for quality assurance to guarantee optimum sealing. The results described in this paper show examples of the capability of the condition monitoring system to detect faults in the sealing process. The results found indicate that the suggested approach could form an effective quality control and assurance system
Apical endosomes isolated from kidney collecting duct principal cells lack subunits of the proton pumping ATPase.
Endocytic vesicles that are involved in the vasopressin-stimulated recycling of water channels to and from the apical membrane of kidney collecting duct principal cells were isolated from rat renal papilla by differential and Percoll density gradient centrifugation. Fluorescence quenching measurements showed that the isolated vesicles maintained a high, HgCl2-sensitive water permeability, consistent with the presence of vasopressin-sensitive water channels. They did not, however, exhibit ATP-dependent luminal acidification, nor any N-ethylmaleimide-sensitive ATPase activity, properties that are characteristic of most acidic endosomal compartments. Western blotting with specific antibodies showed that the 31- and 70-kD cytoplasmically oriented subunits of the vacuolar proton pump were not detectable in these apical endosomes from the papilla, whereas they were present in endosomes prepared in parallel from the cortex. In contrast, the 56-kD subunit of the proton pump was abundant in papillary endosomes, and was localized at the apical pole of principal cells by immunocytochemistry. Finally, an antibody that recognizes the 16-kD transmembrane subunit of oat tonoplast ATPase cross-reacted with a distinct 16-kD band in cortical endosomes, but no 16-kD band was detectable in endosomes from the papilla. This antibody also recognized a 16-kD band in affinity-purified H+ ATPase preparations from bovine kidney medulla. Therefore, early endosomes derived from the apical plasma membrane of collecting duct principal cells fail to acidify because they lack functionally important subunits of a vacuolar-type proton pumping ATPase, including the 16-kD transmembrane domain that serves as the proton-conducting channel, and the 70-kD cytoplasmic subunit that contains the ATPase catalytic site. This specialized, non-acidic early endosomal compartment appears to be involved primarily in the hormonally induced recycling of water channels to and from the apical plasma membrane of vasopressin-sensitive cells in the kidney collecting duct
Probing non-Abelian statistics of Majorana fermions in ultracold atomic superfluid
We propose an experiment to directly probe the non-Abelian statistics of
Majorana fermions by braiding them in an s-wave superfluid of ultracold atoms.
We show different orders of braiding operations give orthogonal output states
that can be distinguished through Raman spectroscopy. Realization of Majorana
bound states in an s-wave superfluid requires strong spin-orbital coupling and
a controllable Zeeman field in the perpendicular direction. We present a simple
laser configuration to generate the artificial spin-orbital coupling and the
required Zeeman field in the dark state subspace.Comment: 4 pages; Add detailed discussion of feasibility of the scheme;add
ref
coupling constant
We calculate the coupling
using light cone QCD sum rule. Our result is
.Comment: RevTex, 5 pages + 1 PS figur
Real-time single image and video super-resolution using an efficient sub-pixel convolutional neural network
Recently, several models based on deep neural networks have achieved great success in terms of both reconstruction accuracy and computational performance for single image super-resolution. In these methods, the low resolution (LR) input image is upscaled to the high resolution (HR) space using a single filter, commonly bicubic interpolation, before reconstruction. This means that the super-resolution (SR) operation is performed in HR space. We demonstrate that this is sub-optimal and adds computational complexity. In this paper, we present the first convolutional neural network (CNN) capable of real-time SR of 1080p videos on a single K2 GPU. To achieve this, we propose a novel CNN architecture where the feature maps are extracted in the LR space. In addition, we introduce an efficient sub-pixel convolution layer which learns an array of upscaling filters to upscale the final LR feature maps into the HR output. By doing so, we effectively replace the handcrafted bicubic filter in the SR pipeline with more complex upscaling filters specifically trained for each feature map, whilst also reducing the computational complexity of the overall SR operation. We evaluate the proposed approach using images and videos from publicly available datasets and show that it performs significantly better (+0.15dB on Images and +0.39dB on Videos) and is an order of magnitude faster than previous CNN-based methods
Linear optical quantum computation with imperfect entangled photon-pair sources and inefficient non-photon-number-resolving detectors
We propose a scheme for efficient cluster state quantum computation by using
imperfect polarization-entangled photon-pair sources, linear optical elements
and inefficient non-photon-number-resolving detectors. The efficiency threshold
for loss tolerance in our scheme requires the product of source and detector
efficiencies should be >1/2 - the best known figure. This figure applies to
uncorrelated loss. We further find that the loss threshold is unaffected by
correlated loss in the photon pair source. Our approach sheds new light on
efficient linear optical quantum computation with imperfect experimental
conditions.Comment: 5 pages, 2 figure
Temperature dependence of the conductivity of the electronic crystal
We study the temperature dependence of the conductivity of the 2D electronic
solid. In realistic samples, a domain structure forms in the solid and each
domain randomly orients in the absence of the in-plane field. At higher
temperature, the electron transport is governed by thermal activation form of
. The impurities will localize the
electron states along the edges of the crystal domains. At sufficient low
temperature, another transport mechanism called Mott's variable range hopping
mechanism, similar to that in a disorder insulator takes effect. We show that
as the temperature decreases, a crossover from the fixed range hopping of the
transport to the variable range hopping of transport in the 2D electron system
may be experimentally observed.Comment: 4 pages,1 figure
- âŠ