58 research outputs found

    The Mre11 protein interacts with both Rad50 and the HerA bipolar helicase and is recruited to DNA following gamma irradiation in the archaeon Sulfolobus acidocaldarius

    Get PDF
    Background: The ubiquitous Rad50 and Mre11 proteins play a key role in many processes involved in the maintenance of genome integrity in Bacteria and Eucarya, but their function in the Archaea is presently unknown. We showed previously that in most hyperthermophilic archaea, rad50-mre11 genes are linked to nurA encoding both a single-strand endonuclease and a 5' to 3' exonuclease, and herA, encoding a bipolar DNA helicase which suggests the involvement of the four proteins in common molecular pathway(s). Since genetic tools for hyperthermophilic archaea are just emerging, we utilized immuno-detection approaches to get the first in vivo data on the role(s) of these proteins in the hyperthermophilic crenarchaeon Sulfolobus acidocaldarius. Results: We first showed that S. acidocaldarius can repair DNA damage induced by high doses of gamma rays, and we performed a time course analysis of the total levels and sub-cellular partitioning of Rad50, Mre11, HerA and NurA along with the RadA recombinase in both control and irradiated cells. We found that during the exponential phase, all proteins are synthesized and display constant levels, but that all of them exhibit a different sub-cellular partitioning. Following gamma irradiation, both Mre11 and RadA are immediately recruited to DNA and remain DNA-bound in the course of DNA repair. Furthermore, we show by immuno-precipitation assays that Rad50, Mre11 and the HerA helicase interact altogether. Conclusion: Our analyses strongly support that in Sulfolobus acidocaldarius, the Mre11 protein and the RadA recombinase might play an active role in the repair of DNA damage introduced by gamma rays and/or may act as DNA damage sensors. Moreover, our results demonstrate the functional interaction between Mre11, Rad50 and the HerA helicase and suggest that each protein play different roles when acting on its own or in association with its partners. This report provides the first in vivo evidence supporting the implication of the Mre11 protein in DNA repair processes in the Archaea and showing its interaction with both Rad50 and the HerA bipolar helicase. Further studies on the functional interactions between these proteins, the NurA nuclease and the RadA recombinase, will allow us to define their roles and mechanism of action.Publisher PDFPeer reviewe

    Mre11-Rad50 Promotes Rapid Repair of DNA Damage in the Polyploid Archaeon Haloferax volcanii by Restraining Homologous Recombination

    Get PDF
    Polyploidy is frequent in nature and is a hallmark of cancer cells, but little is known about the strategy of DNA repair in polyploid organisms. We have studied DNA repair in the polyploid archaeon Haloferax volcanii, which contains up to 20 genome copies. We have focused on the role of Mre11 and Rad50 proteins, which are found in all domains of life and which form a complex that binds to and coordinates the repair of DNA double-strand breaks (DSBs). Surprisingly, mre11 rad50 mutants are more resistant to DNA damage than the wild-type. However, wild-type cells recover faster from DNA damage, and pulsed-field gel electrophoresis shows that DNA double-strand breaks are repaired more slowly in mre11 rad50 mutants. Using a plasmid repair assay, we show that wild-type and mre11 rad50 cells use different strategies of DSB repair. In the wild-type, Mre11-Rad50 appears to prevent the repair of DSBs by homologous recombination (HR), allowing microhomology-mediated end-joining to act as the primary repair pathway. However, genetic analysis of recombination-defective radA mutants suggests that DNA repair in wild-type cells ultimately requires HR, therefore Mre11-Rad50 merely delays this mode of repair. In polyploid organisms, DSB repair by HR is potentially hazardous, since each DNA end will have multiple partners. We show that in the polyploid archaeon H. volcanii the repair of DSBs by HR is restrained by Mre11-Rad50. The unrestrained use of HR in mre11 rad50 mutants enhances cell survival but leads to slow recovery from DNA damage, presumably due to difficulties in the resolution of DNA repair intermediates. Our results suggest that recombination might be similarly repressed in other polyploid organisms and at repetitive sequences in haploid and diploid species

    Small-animal SPECT and SPECT/CT: application in cardiovascular research

    Get PDF
    Preclinical cardiovascular research using noninvasive radionuclide and hybrid imaging systems has been extensively developed in recent years. Single photon emission computed tomography (SPECT) is based on the molecular tracer principle and is an established tool in noninvasive imaging. SPECT uses gamma cameras and collimators to form projection data that are used to estimate (dynamic) 3-D tracer distributions in vivo. Recent developments in multipinhole collimation and advanced image reconstruction have led to sub-millimetre and sub-half-millimetre resolution SPECT in rats and mice, respectively. In this article we review applications of microSPECT in cardiovascular research in which information about the function and pathology of the myocardium, vessels and neurons is obtained. We give examples on how diagnostic tracers, new therapeutic interventions, pre- and postcardiovascular event prognosis, and functional and pathophysiological heart conditions can be explored by microSPECT, using small-animal models of cardiovascular disease

    Sur la valeur d'une distribution dans un point

    No full text

    A novel enzymatic pathway leading to 1-methylinosine modification in Haloferax volcanii tRNA.

    No full text
    Transfer RNAs of the extreme halophile Haloferax volcanii contain several modified nucleosides, among them 1-methylpseudouridine (m1 psi), pseudouridine (psi), 2'-0-methylcytosine (Cm) and 1-methylinosine (m1l), present in positions 54, 55, 56 and 57 of the psi-loop, respectively. At the same positions in tRNAs from eubacteria and eukaryotes, ribothymidine (T-54), pseudouridine (psi-55), non-modified cytosine (C-56) and non-modified adenosine or guanosine (A-57 or G-57) are found in the so-called T psi-loop. Using as substrate a T7 transcript of Haloferax volcanii tRNA(Ile) devoid of modified nucleosides, the enzymatic activities of several tRNA modification enzymes, including those for m1 psi-54, psi-55, Cm-56 and m1l-57, were detected in cell extracts of H.volcanii. Here, we demonstrate that modification of A-57 into m1l-57 in H.volcanii tRNA(Ile) occurs via a two-step enzymatic process. The first step corresponds to the formation of m1A-57 catalyzed by a S-adenosylmethionine-dependent tRNA methyltransferase, followed by the deamination of the 6-amino group of the adenine moiety by a 1-methyladenosine-57 deaminase. This enzymatic pathway differs from that leading to the formation of m1l-37 in the anticodon loop of eukaryotic tRNA(Ala). In the latter case, inosine-37 formation preceeds the S-adenosylmethionine-dependent methylation of l-37 into m1l-37. Thus, enzymatic strategies for catalyzing the formation of 1-methylinosine in tRNAs differ in organisms from distinct evolutionary kingdoms

    A bipolar DNA helicase gene, herA, clusters with rad50, mre11 and nurA genes in thermophilic archaea

    No full text
    We showed previously that rad50 and mre11 genes of thermophilic archaea are organized in an operon-like structure with a third gene (nurA) encoding a 5′ to 3′ exonuclease. Here, we show that the rad50, mre11 and nurA genes from the hyperthermo philic archaeon Sulfolobus acidocaldarius are co-transcribed with a fourth gene encoding a DNA helicase. This enzyme (HerA) is the prototype of a new class of DNA helicases able to utilize either 3′ or 5′ single-stranded DNA extensions for loading and subsequent DNA duplex unwinding. To our knowledge, DNA helicases capable of translocating along the DNA in both directions have not been identified previously. Sequence analysis of HerA shows that it is a member of the TrwB, FtsK and VirB4/VirD4 families of the PilT class NTPases. HerA homologs are found in all thermophilic archaeal species and, in all cases except one, the rad50, mre11, nurA and herA genes are grouped together. These results suggest that the archaeal Rad50–Mre11 complex might act in association with a 5′ to 3′ exonuclease (NurA) and a bipolar DNA helicase (HerA) indicating a probable involvement in the initiation step of homologous recombination
    corecore