123 research outputs found
Successful pregnancy outcome after laparoscopic-assisted excision of a bizarre leiomyoma: a case report
<p>Abstract</p> <p>Introduction</p> <p>Bizarre leiomyoma is a rare leiomyoma variant that requires a precise histopathological evaluation. Especially when diagnosed in a younger woman, this tumor leads to challenging treatment issues involving fertility preservation. Owing to the low incidence of bizarre leiomyoma, there is insufficient evidence to support myomectomy alone as an appropriate management option. Also, the impact of bizarre leiomyoma on fertility is not well known.</p> <p>Case presentation</p> <p>A 30-year-old Japanese woman who had never given birth was referred to us because of a uterine tumor with an unusual diagnostic image and was treated by a gasless laparoscopic-assisted excision with a wound retractor. Owing to an unclear margin between her uterine tumor and myometrium, a concomitant excision of adjacent myometrial tissue was required to achieve the maximum resection of her tumor. The histopathological diagnosis was bizarre leiomyoma. Seven months later, she conceived spontaneously and her pregnancy course was uneventful. At 37 weeks of gestation, an elective cesarean section was performed. Although a slight omental adhesion was noted at the postexcisional scar, her uterine wall structure was well preserved and a recurrence of bizarre leiomyoma was not noted.</p> <p>Conclusions</p> <p>A laparoscopic-assisted excision of bizarre leiomyoma is a feasible and minimally invasive conservative measure for a woman who wishes to preserve fertility.</p
Systemic pro-inflammatory cytokine status following therapeutic hypothermia in a piglet hypoxia-ischemia model
BACKGROUND: Inflammatory cytokines are implicated in the pathogenesis of perinatal hypoxia-ischemia (HI). The influence of hypothermia (HT) on cytokines after HI is unclear. Our aim was to assess in a piglet asphyxia model, under normothermic (NT) and HT conditions: (i) the evolution of serum cytokines over 48 h and (ii) cerebrospinal fluid (CSF) cytokine levels at 48 h; (iii) serum pro/anti-inflammatory cytokine profile over 48 h and (iv) relation between brain injury measured by magnetic resonance spectroscopy (MRS) and brain TUNEL positive cells with serum cytokines, serum pro/anti-inflammatory cytokines and CSF cytokines. METHODS: Newborn piglets were randomized to NT (n = 5) or HT (n = 6) lasting 2-26 h after HI. Serum samples were obtained 4-6 h before, during and at 6-12 h intervals after HI; CSF was obtained at 48 h. Concentrations of interleukin (IL)-1beta, -4, -6, -8, -10 and TNF-alpha were measured and pro/anti-inflammatory status compared between groups. White matter and thalamic voxel lactate/N-acetyl aspartate (Lac/NAA) (a measure of both oxidative metabolism and neuronal loss) were acquired at baseline, after HI and at 24 and 36 h. RESULTS: Lac/NAA was reduced at 36 h with HT compared to NT (p = 0.013 basal ganglia and p = 0.033 white matter). HT showed lower serum TNF-alpha from baseline to 12 h (p < 0.05). Time-matched (acquired within 5 h of each other) serum cytokine and MRS showed correlations between Lac/NAA and serum IL-1beta and IL-10 (all p < 0.01). The pro/anti-inflammatory ratios IL-1beta/IL-10, IL-6/IL-10, IL-4/IL-10 and IL-8/IL-10 were similar in NT and HT groups until 36 h (24 h for IL-6/IL-10); after this, 36 h pro/anti-inflammatory cytokine ratios in the serum were higher in HT compared to NT (p < 0.05), indicating a pro-inflammatory cytokine surge after rewarming in the HT group. In the CSF at 48 h, IL-8 was lower in the HT group (p < 0.05). At 48 h, CSF TNF-alpha correlated with Lac/NAA (p = 0.02) and CSF IL-8 correlated with white matter TUNEL positive cell death (p = 0.04). CONCLUSIONS: Following cerebral HI, there was a systemic pro-inflammatory surge after rewarming in the HT group, which is counterintuitive to the putative neuroprotective effects of HT. While serum cytokines were variable, elevations in CSF inflammatory cytokines at 48 h were associated with MRS Lac/NAA and white matter cell death
New explanation of the GAMS results on the production in the reaction
The observed alteration of the S-wave mass spectrum in the
reaction with increasing , i.e., the disappearance
of a dip and the appearance of a peak in the region of the resonance
as increases, is explained by the contribution of the reaction amplitude with the quantum numbers of the Regge pole
in the channel. It is very interesting that nontrivial evidence for the
exchange mechanism in the reaction follows for
the first time from the experiment on an unpolarized target. The explanation of
the GAMS results suggested by us is compared with that reported previously. Two
ways of experimentally testing these explanations are pointed out.Comment: 20 pages (RevTex), 5 figures (PS), minor typos corrected (in
particular in Fig. 4), replaced to match the version accepted in Phys. Rev.
Clinical approach for the classification of congenital uterine malformations
A more objective, accurate and non-invasive estimation of uterine morphology is nowadays feasible based on the use of modern imaging techniques. The validity of the current classification systems in effective categorization of the female genital malformations has been already challenged. A new clinical approach for the classification of uterine anomalies is proposed. Deviation from normal uterine anatomy is the basic characteristic used in analogy to the American Fertility Society classification. The embryological origin of the anomalies is used as a secondary parameter. Uterine anomalies are classified into the following classes: 0, normal uterus; I, dysmorphic uterus; II, septate uterus (absorption defect); III, dysfused uterus (fusion defect); IV, unilateral formed uterus (formation defect); V, aplastic or dysplastic uterus (formation defect); VI, for still unclassified cases. A subdivision of these main classes to further anatomical varieties with clinical significance is also presented. The new proposal has been designed taking into account the experience gained from the use of the currently available classification systems and intending to be as simple as possible, clear enough and accurate as well as open for further development. This proposal could be used as a starting point for a working group of experts in the field
Development and reproductive performance of Hereford heifers of different frame sizes up to mating at 14-15 months of age
ABSTRACT Body development and reproductive performance of a hundred forty-two 14 to 15-month-old heifers, classified at weaning according to frame size as small, medium, and large, were evaluated. The parameters evaluated were: body weight, hip height, body condition score, weight gain, ovarian activity, and pregnancy rate. At weaning, body weight and hip height were significantly different among frame scores, (small – 133.0 kg, 92.2 cm; medium – 158.5 kg, 96.6 cm; and large – 185.2 kg; 100.2 cm). After weaning, heifers grazed together on natural pastures during the autumn and on ryegrass (Lolium multiflorum La.) during the winter and spring. Frame score differences remained until the beginning of the breeding season (BS), starting on average at 14 months of age. Weight gain between weaning and the beginning of BS was not different among frame scores (0.740 kg/day, on average). Body weights at the beginning of the BS were significantly different, of 255.7 kg (53.3% of the mature weight) for small heifers, 285.0 kg (59.4%) for medium heifers, and 307.6 kg (64.1%) for large heifers. Ovarian activity at the beginning of the BS was not different among the three groups. The average weight gain values during the BS of 0.492, 0.472, and 0.421 kg/day for small, medium, and large heifers, respectively, were significantly different. Pregnancy rates were not different among groups (small, 71.4%; medium, 76.4%; and large, 76.5%). Frame score did not influence the reproductive performance of heifers, but the small and medium heifers conceived 29 and 20 days earlier, respectively, than the large heifers
Recommended from our members
Ground penetrating radar enabled by high gain GaAs photoconductive semiconductor switches
The ability of high gain GaAs Photoconductive Semiconductor switches (PCSS) to deliver fast risetime, low jitter pulses when triggered with small laser diode arrays makes them suitable for their use in ultrawide bandwidth (UWB), impulse transmitters. This paper will summarize the state-of-the-art in high gain GaAs switches and discuss how GaAs switches are being implemented in a transmitter for detection of underground structures. The advantage of this type of semiconductor switch is demonstrated operation at high voltages (100 kV) and repetition rates (1 kHz) with the potential for much higher repetition rates. The latter would increase the demonstrated average powers of 100 W to 1 kW and higher. We will also present an analysis of the effectiveness of different pulser geometries that result in transmitted pulses with varying frequency content. To this end, we have developed a simple model that includes transmit and receive antenna response, attenuation and dispersion of the electromagnetic impulses by the soil, and target cross sections
Recommended from our members
Final report of LDRD project: Electromagnetic impulse radar for detection of underground structures
This report provides a summary of the LDRD project titled: Electromagnetic impulse radar for the detection of underground structures. The project met all its milestones even with a tight two year schedule and total funding of $400 k. The goal of the LDRD was to develop and demonstrate a ground penetrating radar (GPR) that is based on high peak power, high repetition rate, and low center frequency impulses. The idea of this LDRD is that a high peak power, high average power radar based on the transmission of short impulses can be utilized effect can be utilized for ground penetrating radar. This direct time-domain system the authors are building seeks to increase penetration depth over conventional systems by using: (1) high peak power, high repetition rate operation that gives high average power, (2) low center frequencies that better penetrate the ground, and (3) short duration impulses that allow for the use of downward looking, low flying platforms that increase the power on target relative to a high flying platform. Specifically, chirped pulses that are a microsecond in duration require (because it is difficult to receive during transmit) platforms above 150 m (and typically 1 km) while this system, theoretically could be at 10 m above the ground. The power on target decays with distance squared so the ability to use low flying platforms is crucial to high penetration. Clutter is minimized by time gating the surface clutter return. Short impulses also allow gating (out) the coupling of the transmit and receive antennas
- …