12,903 research outputs found

    Corrections to Scaling in the Phase-Ordering Dynamics of a Vector Order Parameter

    Full text link
    Corrections to scaling, associated with deviations of the order parameter from the scaling morphology in the initial state, are studied for systems with O(n) symmetry at zero temperature in phase-ordering kinetics. Including corrections to scaling, the equal-time pair correlation function has the form C(r,t) = f_0(r/L) + L^{-omega} f_1(r/L) + ..., where L is the coarsening length scale. The correction-to-scaling exponent, omega, and the correction-to-scaling function, f_1(x), are calculated for both nonconserved and conserved order parameter systems using the approximate Gaussian closure theory of Mazenko. In general, omega is a non-trivial exponent which depends on both the dimensionality, d, of the system and the number of components, n, of the order parameter. Corrections to scaling are also calculated for the nonconserved 1-d XY model, where an exact solution is possible.Comment: REVTeX, 20 pages, 2 figure

    Velocity Distribution of Topological Defects in Phase-Ordering Systems

    Full text link
    The distribution of interface (domain-wall) velocities v{\bf v} in a phase-ordering system is considered. Heuristic scaling arguments based on the disappearance of small domains lead to a power-law tail, Pv(v)vpP_v(v) \sim v^{-p} for large v, in the distribution of vvv \equiv |{\bf v}|. The exponent p is given by p=2+d/(z1)p = 2+d/(z-1), where d is the space dimension and 1/z is the growth exponent, i.e. z=2 for nonconserved (model A) dynamics and z=3 for the conserved case (model B). The nonconserved result is exemplified by an approximate calculation of the full distribution using a gaussian closure scheme. The heuristic arguments are readily generalized to conserved case (model B). The nonconserved result is exemplified by an approximate calculation of the full distribution using a gaussian closure scheme. The heuristic arguments are readily generalized to systems described by a vector order parameter.Comment: 5 pages, Revtex, no figures, minor revisions and updates, to appear in Physical Review E (May 1, 1997

    Phase Ordering Kinetics with External Fields and Biased Initial Conditions

    Full text link
    The late-time phase-ordering kinetics of the O(n) model for a non-conserved order parameter are considered for the case where the O(n) symmetry is broken by the initial conditions or by an external field. An approximate theoretical approach, based on a `gaussian closure' scheme, is developed, and results are obtained for the time-dependence of the mean order parameter, the pair correlation function, the autocorrelation function, and the density of topological defects [e.g. domain walls (n=1n=1), or vortices (n=2n=2)]. The results are in qualitative agreement with experiments on nematic films and related numerical simulations on the two-dimensional XY model with biased initial conditions.Comment: 35 pages, latex, no figure

    Vortex annihilation in the ordering kinetics of the O(2) model

    Full text link
    The vortex-vortex and vortex-antivortex correlation functions are determined for the two-dimensional O(2) model undergoing phase ordering. We find reasonably good agreement with simulation results for the vortex-vortex correlation function where there is a short-scaled distance depletion zone due to the repulsion of like-signed vortices. The vortex-antivortex correlation function agrees well with simulation results for intermediate and long-scaled distances. At short-scaled distances the simulations show a depletion zone not seen in the theory.Comment: 28 pages, REVTeX, submitted to Phys. Rev.

    Phase Ordering Dynamics of the O(n) Model - Exact Predictions and Numerical Results

    Full text link
    We consider the pair correlation functions of both the order parameter field and its square for phase ordering in the O(n)O(n) model with nonconserved order parameter, in spatial dimension 2d32\le d\le 3 and spin dimension 1nd1\le n\le d. We calculate, in the scaling limit, the exact short-distance singularities of these correlation functions and compare these predictions to numerical simulations. Our results suggest that the scaling hypothesis does not hold for the d=2d=2 O(2)O(2) model. Figures (23) are available on request - email [email protected]: 23 pages, Plain LaTeX, M/C.TH.93/2

    A volumetric Penrose inequality for conformally flat manifolds

    Full text link
    We consider asymptotically flat Riemannian manifolds with nonnegative scalar curvature that are conformal to RnΩ,n3\R^{n}\setminus \Omega, n\ge 3, and so that their boundary is a minimal hypersurface. (Here, ΩRn\Omega\subset \R^{n} is open bounded with smooth mean-convex boundary.) We prove that the ADM mass of any such manifold is bounded below by (V/βn)(n2)/n(V/\beta_{n})^{(n-2)/n}, where VV is the Euclidean volume of Ω\Omega and βn\beta_{n} is the volume of the Euclidean unit nn-ball. This gives a partial proof to a conjecture of Bray and Iga \cite{brayiga}. Surprisingly, we do not require the boundary to be outermost.Comment: 7 page

    Exact results for curvature-driven coarsening in two dimensions

    Get PDF
    We consider the statistics of the areas enclosed by domain boundaries (`hulls') during the curvature-driven coarsening dynamics of a two-dimensional nonconserved scalar field from a disordered initial state. We show that the number of hulls per unit area that enclose an area greater than AA has, for large time tt, the scaling form Nh(A,t)=2c/(A+λt)N_h(A,t) = 2c/(A+\lambda t), demonstrating the validity of dynamical scaling in this system, where c=1/8π3c=1/8\pi\sqrt{3} is a universal constant. Domain areas (regions of aligned spins) have a similar distribution up to very large values of A/λtA/\lambda t. Identical forms are obtained for coarsening from a critical initial state, but with cc replaced by c/2c/2.Comment: 4 pages, 4 figure

    Magnetic exponents of two-dimensional Ising spin glasses

    Full text link
    The magnetic critical properties of two-dimensional Ising spin glasses are controversial. Using exact ground state determination, we extract the properties of clusters flipped when increasing continuously a uniform field. We show that these clusters have many holes but otherwise have statistical properties similar to those of zero-field droplets. A detailed analysis gives for the magnetization exponent delta = 1.30 +/- 0.02 using lattice sizes up to 80x80; this is compatible with the droplet model prediction delta = 1.282. The reason for previous disagreements stems from the need to analyze both singular and analytic contributions in the low-field regime.Comment: 4 pages, 4 figures, title now includes "Ising

    The comprehensive cancer monitoring programme in Europe.

    No full text
    BACKGROUND: There continue to be major public health challenges arising from the increasing cancer burden in Europe. Drawing upon expertise from other European centres and networks, the Comprehensive Cancer Monitoring Programme in Europe project (CaMon) provides a central information resource of the cancer profile in European populations. METHODS: The cancer indicators fundamental to disease monitoring in Europe are illustrated in terms of definitions and availability. Where necessary data are supplemented by estimates, in order to make available cancer data to individuals and institutions in all Member and Applicant countries of the European Union (EU). The relevant methodologies are discussed. Finally, a major ongoing project examining time trends of cancer incidence and mortality in 38 European countries is described. RESULTS: In the European Union, there were approximately 1.6 million new cases of cancer according to the latest year available, and approximately, one million cancer deaths. About 2.6 million new cases of cancer, and 1.6 million deaths were estimated in Europe. Lung cancer is the most common cancer in Europe and together with cancers of the colon and rectum and female breast represent approximately 40% of new cases in Europe. CONCLUSION: The statistics generated by the project on cancer incidence, mortality, survival and prevalence, together with time trends and projections will be regularly updated and made available to a European Commission, and to a Community-wide audience via the CaMon website and via other means of dissemination, such as peer-reviewed journals

    Multiscaling to Standard Scaling Crossover in the Bray-Humayun Model for Phase Ordering Kinetics

    Full text link
    The Bray-Humayun model for phase ordering dynamics is solved numerically in one and two space dimensions with conserved and non conserved order parameter. The scaling properties are analysed in detail finding the crossover from multiscaling to standard scaling in the conserved case. Both in the nonconserved case and in the conserved case when standard scaling holds the novel feature of an exponential tail in the scaling function is found.Comment: 21 pages, 10 Postscript figure
    corecore