12,903 research outputs found
Corrections to Scaling in the Phase-Ordering Dynamics of a Vector Order Parameter
Corrections to scaling, associated with deviations of the order parameter
from the scaling morphology in the initial state, are studied for systems with
O(n) symmetry at zero temperature in phase-ordering kinetics. Including
corrections to scaling, the equal-time pair correlation function has the form
C(r,t) = f_0(r/L) + L^{-omega} f_1(r/L) + ..., where L is the coarsening length
scale. The correction-to-scaling exponent, omega, and the correction-to-scaling
function, f_1(x), are calculated for both nonconserved and conserved order
parameter systems using the approximate Gaussian closure theory of Mazenko. In
general, omega is a non-trivial exponent which depends on both the
dimensionality, d, of the system and the number of components, n, of the order
parameter. Corrections to scaling are also calculated for the nonconserved 1-d
XY model, where an exact solution is possible.Comment: REVTeX, 20 pages, 2 figure
Velocity Distribution of Topological Defects in Phase-Ordering Systems
The distribution of interface (domain-wall) velocities in a
phase-ordering system is considered. Heuristic scaling arguments based on the
disappearance of small domains lead to a power-law tail,
for large v, in the distribution of . The exponent p is
given by , where d is the space dimension and 1/z is the growth
exponent, i.e. z=2 for nonconserved (model A) dynamics and z=3 for the
conserved case (model B). The nonconserved result is exemplified by an
approximate calculation of the full distribution using a gaussian closure
scheme. The heuristic arguments are readily generalized to conserved case
(model B). The nonconserved result is exemplified by an approximate calculation
of the full distribution using a gaussian closure scheme. The heuristic
arguments are readily generalized to systems described by a vector order
parameter.Comment: 5 pages, Revtex, no figures, minor revisions and updates, to appear
in Physical Review E (May 1, 1997
Phase Ordering Kinetics with External Fields and Biased Initial Conditions
The late-time phase-ordering kinetics of the O(n) model for a non-conserved
order parameter are considered for the case where the O(n) symmetry is broken
by the initial conditions or by an external field. An approximate theoretical
approach, based on a `gaussian closure' scheme, is developed, and results are
obtained for the time-dependence of the mean order parameter, the pair
correlation function, the autocorrelation function, and the density of
topological defects [e.g. domain walls (), or vortices ()]. The
results are in qualitative agreement with experiments on nematic films and
related numerical simulations on the two-dimensional XY model with biased
initial conditions.Comment: 35 pages, latex, no figure
Vortex annihilation in the ordering kinetics of the O(2) model
The vortex-vortex and vortex-antivortex correlation functions are determined
for the two-dimensional O(2) model undergoing phase ordering. We find
reasonably good agreement with simulation results for the vortex-vortex
correlation function where there is a short-scaled distance depletion zone due
to the repulsion of like-signed vortices. The vortex-antivortex correlation
function agrees well with simulation results for intermediate and long-scaled
distances. At short-scaled distances the simulations show a depletion zone not
seen in the theory.Comment: 28 pages, REVTeX, submitted to Phys. Rev.
Phase Ordering Dynamics of the O(n) Model - Exact Predictions and Numerical Results
We consider the pair correlation functions of both the order parameter field
and its square for phase ordering in the model with nonconserved order
parameter, in spatial dimension and spin dimension .
We calculate, in the scaling limit, the exact short-distance singularities of
these correlation functions and compare these predictions to numerical
simulations. Our results suggest that the scaling hypothesis does not hold for
the model. Figures (23) are available on request - email
[email protected]: 23 pages, Plain LaTeX, M/C.TH.93/2
A volumetric Penrose inequality for conformally flat manifolds
We consider asymptotically flat Riemannian manifolds with nonnegative scalar
curvature that are conformal to , and so that
their boundary is a minimal hypersurface. (Here, is open
bounded with smooth mean-convex boundary.) We prove that the ADM mass of any
such manifold is bounded below by , where is the
Euclidean volume of and is the volume of the Euclidean
unit -ball. This gives a partial proof to a conjecture of Bray and Iga
\cite{brayiga}. Surprisingly, we do not require the boundary to be outermost.Comment: 7 page
Exact results for curvature-driven coarsening in two dimensions
We consider the statistics of the areas enclosed by domain boundaries
(`hulls') during the curvature-driven coarsening dynamics of a two-dimensional
nonconserved scalar field from a disordered initial state. We show that the
number of hulls per unit area that enclose an area greater than has, for
large time , the scaling form , demonstrating
the validity of dynamical scaling in this system, where is a
universal constant. Domain areas (regions of aligned spins) have a similar
distribution up to very large values of . Identical forms are
obtained for coarsening from a critical initial state, but with replaced by
.Comment: 4 pages, 4 figure
Magnetic exponents of two-dimensional Ising spin glasses
The magnetic critical properties of two-dimensional Ising spin glasses are
controversial. Using exact ground state determination, we extract the
properties of clusters flipped when increasing continuously a uniform field. We
show that these clusters have many holes but otherwise have statistical
properties similar to those of zero-field droplets. A detailed analysis gives
for the magnetization exponent delta = 1.30 +/- 0.02 using lattice sizes up to
80x80; this is compatible with the droplet model prediction delta = 1.282. The
reason for previous disagreements stems from the need to analyze both singular
and analytic contributions in the low-field regime.Comment: 4 pages, 4 figures, title now includes "Ising
The comprehensive cancer monitoring programme in Europe.
BACKGROUND: There continue to be major public health challenges arising from the increasing cancer burden in Europe. Drawing upon expertise from other European centres and networks, the Comprehensive Cancer Monitoring Programme in Europe project (CaMon) provides a central information resource of the cancer profile in European populations. METHODS: The cancer indicators fundamental to disease monitoring in Europe are illustrated in terms of definitions and availability. Where necessary data are supplemented by estimates, in order to make available cancer data to individuals and institutions in all Member and Applicant countries of the European Union (EU). The relevant methodologies are discussed. Finally, a major ongoing project examining time trends of cancer incidence and mortality in 38 European countries is described. RESULTS: In the European Union, there were approximately 1.6 million new cases of cancer according to the latest year available, and approximately, one million cancer deaths. About 2.6 million new cases of cancer, and 1.6 million deaths were estimated in Europe. Lung cancer is the most common cancer in Europe and together with cancers of the colon and rectum and female breast represent approximately 40% of new cases in Europe. CONCLUSION: The statistics generated by the project on cancer incidence, mortality, survival and prevalence, together with time trends and projections will be regularly updated and made available to a European Commission, and to a Community-wide audience via the CaMon website and via other means of dissemination, such as peer-reviewed journals
Multiscaling to Standard Scaling Crossover in the Bray-Humayun Model for Phase Ordering Kinetics
The Bray-Humayun model for phase ordering dynamics is solved numerically in
one and two space dimensions with conserved and non conserved order parameter.
The scaling properties are analysed in detail finding the crossover from
multiscaling to standard scaling in the conserved case. Both in the
nonconserved case and in the conserved case when standard scaling holds the
novel feature of an exponential tail in the scaling function is found.Comment: 21 pages, 10 Postscript figure
- …
