30 research outputs found

    A GC-MS Method for the Determination of Isoxsuprine in Biological Fluids of the Horse Utilizing Electron Impact Ionization

    Get PDF
    Isoxsuprine is used to treat navicular disease and other lower-limb problems in the horse. Isoxsuprine is regulated as a class 4 compound by the Association of Racing Commissioners, International (ARCI) and, thus, requires regulatory monitoring. A gas chromatography-mass spectrometry method utilizing electron impact ionization was developed and validated for the quantitation of isoxsuprine in equine plasma or equine urine. The method utilized robotic solid-phase extraction and tri-methyl silyl ether products of derivatization. Products were bis-trimethylsilyl (TMS) isoxsuprine and tris-TMS ritodrine, which released intense quantifier ions m/z 178 for isoxsuprine and m/z 236 for ritodrine that were products of C-C cleavage. To our knowledge, this procedure is faster and more sensitive than other methods in the literature. Concentrations in urine and plasma of isoxsuprine were determined from a calibrator curve that was generated along with unknowns. Ritodrine was used as an internal standard and was, therefore, present in all samples, standards, and blanks. Validation data was also collected. The limit of detection of isoxsuprine in plasma was determined to be 2 ng/mL, the limit of quantitation of isoxsuprine in plasma was determined to be \u3c 5 ng/mL. The mean coefficient of determination for the calibrator curves for plasma was 0.9925 ± 0.0052 and for calibrator curves for urine 0.9904 ± 0.0075. The recovery efficiencies at concentrations of 50, 200, and 300 ng/mL were 76%, 73%, and 76%, respectively, in plasma and 92%, 89% and 91% in urine

    Development of a method for the detection and confirmation of the alpha-2 agonist amitraz and its major metabolite in horse urine

    Get PDF
    Amitraz (N′-(2,4-dimethylphenyl)-N-[[(2,4-dimethylphenyl)imino] methyl]-N-methyl-methanimidamide) is an alpha-2 adrenergic agonist used in veterinary medicine primarily as a scabicide- or acaricide-type insecticide. As an alpha-2 adrenergic agonist, it also has sedative/tranquilizing properties and is, therefore, listed as an Association of Racing Commissioners International Class 3 Foreign Substance, indicating its potential to influence the outcome of horse races. We identified the principal equine metabolite of amitraz as N-2,4-dimethylphenyl-N′-methylformamidine by electrospray ionization(+)-mass spectrometry and developed a gas chromatographic-mass spectrometric (GC-MS) method for its detection, quantitation, and confirmation in performance horse regulation. The GC-MS method involves derivatization with t-butyldimethylsilyl groups; selected ion monitoring (SIM) of m/z 205 (quantifier ion), 278, 261, and 219 (qualifier ions); and elaboration of a calibration curve based on ion area ratios involving simultaneous SIM acquisition of an internal standard m/z 208 quantifier ion based on an in-house synthesized d6 deuterated metabolite. The limit of detection of the method is approximately 5 ng/mL in urine and is sufficiently sensitive to detect the peak urinary metabolite at 1 h post dose, following administration of amitraz at a 75-mg/horse intraveneous dose

    Detection and Confirmation of Ractopamine and Its Metabolites in Horse Urine after Paylean® Administration

    Get PDF
    We have investigated the detection, confirmation, and metabolism of the beta-adrenergic agonist ractopamine administered as Paylean to the horse. A Testing Components Corporation enzyme-linked imunosorbent assay (ELISA) kit for ractopamine displayed linear response between 1.0 and 100 ng/ml, with an 1-50 of 10 ng/ml, and an effective screening limit of detection of 50 ng/mL. The kit was readily able to detect ractopamine equivalents in unhydrolyzed urine up to 24 h following a 300-mg oral dose. Gas chromatography-mass spectrometry (GC-MS) confirmation comprised glucuronidase treatment, solid-phase extraction, and trimethylsilyl derivatization, with selected-ion monitoring of ractopamine-tris(trimethylsilane) (TMS) m/z 267, 250, 179, and 502 ions. Quantitation was elaborated in comparison to a 445 Mw isoxsuprine-bis(TMS) internal standard monitored simultaneously. The instrumental limit of detection, defined as that number of ng on column for which signal-to-noise ratios for one or more diagnostic ions fell below a value of three, was 0.1 ng, corresponding to roughly 5 ng/mL in matrix. Based on the quantitation ions for ractopamine standards extracted from urine, standard curves showed a linear response for ractopamine concentrations between 10 and 100 ng/mL with a correlation coefficient r \u3e 0.99, whereas standards in the concentration range of 10-1000 ng/mL were fit to a second-order regression curve with r \u3e 0.99. The lower limit of detection for ractopamine in urine, defined as the lowest concentration at which the identity of ractopamine could be confirmed by comparison of diagnostic MS ion ratios, ranged between 25 and 50 ng/mL. Urine concentration of parent ractopamine 24 h post-dose was measured at 360 ng/mL by GC-MS after oral administration of 300 mg. Urinary metabolites were identified by electrospray ionization (+) tandem quadrupole mass spectrometry and were shown to include glucuronide, methyl, and mixed methyl-glucuronide conjugates. We also considered the possibility that an unusual conjugate added 113 amu to give an observed m/z 415 [M+H] species or two times 113 amu to give an m/z 528 [M+H] species with a daughter ion mass spectrum related to the previous one. Sulfate and mixed methyl-sulfate conjugates were revealed following glucuronidase treatment, suggesting that sulfation occurs in combination with glucuronidation. We noted a paired chromatographic peak phenomenon of apparent ractopamine metabolites appearing as doublets of equivalent intensity with nearly identical mass spectra on GC-MS and concluded that this phenomenon is consistent with Paylean being a mixture of RR, RS, SR, and SS diastereomers of ractopamine. The results suggest that ELISA-based screening followed by glucuronide hydrolysis, parent drug recovery, and TMS derivatization provide an effective pathway for detection and GC-MS confirmation of ractopamine in equine urine

    Remifentanil in the Horse: Identification and Detection of its Major Urinary Metabolite

    Get PDF
    Remifentanil (4-methoxycarbonyl-4-[(1-oxopropyl)phyenylamino]-1- piperidinepropionic acid methyl ester) is a ÎĽ-opioid receptor agonist with considerable abuse potential in racing horses. The identification of its major equine urinary metabolite, 4-methoxycarbonyl-4-[(1- oxopropyl)phenylamino]-1-piperidinepropionic acid, an ester hydrolysis product of remifentanil is reported. Administration of remifentanil HCl (5 mg, intravenous) produced clear-cut locomotor responses, establishing the clinical efficacy of this dose. ELISA analysis of postadministration urine samples readily detected fentanyl equivalents in these samples. Mass spectrometric analysis, using solid-phase extraction and trimethylsilyl (TMS) derivatization, showed the urine samples contained parent remifentanil in low concentrations, peaking at 1 h. More significantly, a major peak was identified as representing 4-methoxycarbonyl-4-[(1-oxopropyl)phenylamino]-1- piperidinepropionic acid, arising from ester hydrolysis of remifentanil. This metabolite reached its maximal urinary concentrations at 1 h and was present at up to 10-fold greater concentrations than parent remifentanil. Base hydrolysis of remifentanil yielded a carboxylic acid with the same mass spectral characteristics as those of the equine metabolite. In summary, these data indicate that remifentanil administration results in the appearance of readily detectable amounts of 4-methoxycarbonyl-4-[(1-oxopropyl)phenylamino]- 1-piperidinepropionic acid in urine. On this basis, screening and confirmation tests for this equine urinary metabolite should be optimized for forensic control of remifentanil

    Enhanced effector function of cytotoxic cells in the induced sputum of COPD patients

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>We have previously shown that NK (CD56<sup>+</sup>CD3<sup>-</sup>) and NKT-like (CD56<sup>+</sup>CD3<sup>+</sup>) cells are reduced in both numbers and cytotoxicity in peripheral blood. The aim of the present study was to investigate their numbers and function within induced sputum.</p> <p>Methods</p> <p>Induced sputum cell numbers and intracellular granzyme B and perforin were analysed by flow cytometry. Immunomagnetically selected CD56<sup>+ </sup>cells (NK and NKT-like cells) were used in an LDH release assay to determine cytotoxicity.</p> <p>Results</p> <p>The proportion of NK cells and NKT-like cells in smokers with COPD (COPD subjects) was significantly higher (12.7% and 3%, respectively) than in healthy smokers (smokers) (5.7%, p < 0.01; 1%, p < 0.001) and non-smoking healthy subjects (HNS) (4.2%, p < 0.001; 0.8%, p < 0.01). The proportions of NK cells and NKT-like cells expressing <it>both </it>perforin <it>and </it>granzyme B were also significantly higher in COPD subjects compared to smokers and HNS. CD56<sup>+ </sup>cells from COPD subjects were significantly more cytotoxic (1414 biological lytic activity) than those from smokers (142.5; p < 0.01) and HNS (3.8; p < 0.001) and were inversely correlated to FEV<sub>1</sub>. (r = -0.75; p = 0.0098).</p> <p>Conclusion</p> <p>We have shown an increased proportion of NK and NKT-like cells in the induced sputum of COPD subjects and have demonstrated that these cells are significantly more cytotoxic in COPD subjects than smokers and HNS.</p

    Discovery of antimicrobial agent targeting tryptophan synthase

    No full text
    Antibiotic resistance is a continually growing challenge in the treatment of various bacterial infections worldwide. New drugs and new drug targets are necessary to curb the threat of infectious diseases caused by multidrug-resistant pathogens. The tryptophan biosynthesis pathway is essential for bacterial growth but is absent in higher animals and humans. Drugs that can inhibit the bacterial biosynthesis of tryptophan offer a new class of antibiotics. In this work, we combined a structure-based strategy using in silico docking screening and molecular dynamics (MD) simulations to identify compounds targeting the α subunit of tryptophan synthase with experimental methods involving the whole-cell minimum inhibitory concentration (MIC) test, solution state NMR, and crystallography to confirm the inhibition of L-tryptophan biosynthesis. Screening 1,800 compounds from the National Cancer Institute Diversity Set I against α subunit revealed 28 compounds for experimental validation; four of the 28 hit compounds showed promising activity in MIC testing. We performed solution state NMR experiments to demonstrate that a one successful inhibitor, 3-amino-3-imino-2-phenyldiazenylpropanamide (Compound 1) binds to the α subunit. We also report a crystal structure of Salmonella enterica serotype Typhimurium tryptophan synthase in complex with Compound 1 which revealed a binding site at the αβ interface of the dimeric enzyme. MD simulations were carried out to examine two binding sites for the compound. Our results show that this small molecule inhibitor could be a promising lead for future drug development

    Genetic variation in the DNA repair genes is predictive of outcome in lung cancer.

    No full text
    To assess whether DNA repair gene variants influence the clinical behaviour of lung cancer we examined the impact of a comprehensive panel of 109 non-synonymous single-nucleotide polymorphisms (nsSNPs) in 50 DNA repair genes on overall survival (OS) in 700 lung cancer patients. Fifteen nsSNPs were associated with OS, significantly greater than that expected (P = 0.04). SNPs associated with prognosis mapped primarily to two repair pathways--nucleotide excision repair (NER): ERCC5 D1104H (P = 0.004); ERCC6 G399D (P = 0.023), ERCC6 Q1413R (P = 0.025), POLE (P = 0.014) and base excision repair: APEX1 D148E (P = 0.028); EXO1 E670G (P = 0.007); POLB P242R (P = 0.018). An increasing number of variant alleles in EXO1 was associated with a poorer prognosis [hazard ratio (HR) = 1.24; P = 0.0009]. A role for variation in NER and BRCA2/FA pathway genes as determinants of OS was provided by an analysis restricted to the 456 patients treated with platinum-based agents. Our data indicate that the pathway-based approach has the potential to generate prognostic markers of clinical outcome
    corecore