271 research outputs found

    Ultrasonic Characterization of Rough Cracks

    Get PDF
    It has been reported before that frequency and angular information from ultrasonic scattering can be used to characterize smooth artificial defects in metals. In this study ultrasonic measurements from fractured and smooth penny-shaped cracks of the same size were carried out. Experimental procedures included the use of broad band and narrow band ultrasonic signals. From angular and frequency dependence of ultrasonic scattering measurements the size, shape, orientation and rms roughness of the fractured surface have been estimated. Ultrasonic measurements of these parameters have been compared to the actual parameters of the defect

    Bose-Einstein Condensate in Weak 3d Isotropic Speckle Disorder

    Get PDF
    The effect of a weak three-dimensional (3d) isotropic laser speckle disorder on various thermodynamic properties of a dilute Bose gas is considered at zero temperature. First, we summarize the derivation of the autocorrelation function of laser speckles in 1d and 2d following the seminal work of Goodman. The goal of this discussion is to show that a Gaussian approximation of this function, proposed in some recent papers, is inconsistent with the general background of laser speckle theory. Then we propose a possible experimental realization for an isotropic 3d laser speckle potential and derive its corresponding autocorrelation function. Using a Fourier transform of that function, we calculate both condensate depletion and sound velocity of a Bose-Einstein condensate as disorder ensemble averages of such a weak laser speckle potential within a perturbative solution of the Gross-Pitaevskii equation. By doing so, we reproduce the expression of the normalfluid density obtained earlier within the treatment of Landau. This physically transparent derivation shows that condensate particles, which are scattered by disorder, form a gas of quasiparticles which is responsible for the normalfluid component

    Wernicke-Kleist-Leonhard phenotypes of endogenous psychoses: a review of their validity .

    Get PDF
    While the ICD-DSM paradigm has been a major advance in clinical psychiatry, its usefulness for biological psychiatry is debated. By defining consensus-based disorders rather than empirically driven phenotypes, consensus classifications were not an implementation of the biomedical paradigm. In the field of endogenous psychoses, the Wernicke-Kleist-Leonhard (WKL) pathway has optimized the descriptions of 35 major phenotypes using common medical heuristics on lifelong diachronic observations. Regarding their construct validity, WKL phenotypes have good reliability and predictive and face validity. WKL phenotypes come with remarkable evidence for differential validity on age of onset, familiality, pregnancy complications, precipitating factors, and treatment response. Most impressive is the replicated separation of high- and low-familiality phenotypes. Created in the purest tradition of the biomedical paradigm, the WKL phenotypes deserve to be contrasted as credible alternatives with other approaches currently under discussion.

    Integration of multiple platforms for the analysis of multifluorescent marking technology applied to pediatric GBM and dipg

    Get PDF
    The intratumor heterogeneity represents one of the most difficult challenges for the development of effective therapies to treat pediatric glioblastoma (pGBM) and diffuse intrinsic pontine glioma (DIPG). These brain tumors are composed of heterogeneous cell subpopulations that coexist and cooperate to build a functional network responsible for their aggressive phenotype. Understanding the cellular and molecular mechanisms sustaining such network will be crucial for the identification of new therapeutic strategies. To study more in-depth these mechanisms, we sought to apply the Multifluorescent Marking Technology. We generated multifluorescent pGBM and DIPG bulk cell lines randomly expressing six different fluorescent proteins and from which we derived stable optical barcoded single cell-derived clones. In this study, we focused on the application of the Multifluorescent Marking Technology in 2D and 3D in vitro/ex vivo culture systems. We discuss how we integrated different multimodal fluorescence analysis platforms, identifying their strengths and limitations, to establish the tools that will enable further studies on the intratumor heterogeneity and interclonal interactions in pGBM and DIPG

    Three-dimensional localization of ultracold atoms in an optical disordered potential

    Full text link
    We report a study of three-dimensional (3D) localization of ultracold atoms suspended against gravity, and released in a 3D optical disordered potential with short correlation lengths in all directions. We observe density profiles composed of a steady localized part and a diffusive part. Our observations are compatible with the self-consistent theory of Anderson localization, taking into account the specific features of the experiment, and in particular the broad energy distribution of the atoms placed in the disordered potential. The localization we observe cannot be interpreted as trapping of particles with energy below the classical percolation threshold.Comment: published in Nature Physics; The present version is the initial manuscript (unchanged compared to version 1); The published version is available online at http://www.nature.com/nphys/journal/vaop/ncurrent/full/nphys2256.htm

    ESA-Ariel Data Challenge NeurIPS 2022: Inferring Physical Properties of Exoplanets From Next-Generation Telescopes

    Get PDF
    The study of extra-solar planets, or simply, exoplanets, planets outside our own Solar System, is fundamentally a grand quest to understand our place in the Universe. Discoveries in the last two decades have re-defined our understanding of planets, and helped us comprehend the uniqueness of our very own Earth. In recent years the focus has shifted from planet detection to planet characterisation, where key planetary properties are inferred from telescope observations using Monte Carlo-based methods. However, the efficiency of sampling-based methodologies is put under strain by the high-resolution observational data from next generation telescopes, such as the James Webb Space Telescope and the Ariel Space Mission. We are delighted to announce the acceptance of the Ariel ML Data Challenge 2022 as part of the NeurIPS competition track. The goal of this challenge is to identify a reliable and scalable method to perform planetary characterisation. Depending on the chosen track, participants are tasked to provide either quartile estimates or the approximate distribution of key planetary properties. To this end, a synthetic spectroscopic dataset has been generated from the official simulators for the ESA Ariel Space Mission. The aims of the competition are three-fold. 1) To offer a challenging application for comparing and advancing conditional density estimation methods. 2) To provide a valuable contribution towards reliable and efficient analysis of spectroscopic data, enabling astronomers to build a better picture of planetary demographics, and 3) To promote the interaction between ML and exoplanetary science. The competition is open from 15th June and will run until early October, participants of all skill levels are more than welcomed

    Caribbean Corals in Crisis: Record Thermal Stress, Bleaching, and Mortality in 2005

    Get PDF
    BACKGROUND The rising temperature of the world's oceans has become a major threat to coral reefs globally as the severity and frequency of mass coral bleaching and mortality events increase. In 2005, high ocean temperatures in the tropical Atlantic and Caribbean resulted in the most severe bleaching event ever recorded in the basin. METHODOLOGY/PRINCIPAL FINDINGS Satellite-based tools provided warnings for coral reef managers and scientists, guiding both the timing and location of researchers' field observations as anomalously warm conditions developed and spread across the greater Caribbean region from June to October 2005. Field surveys of bleaching and mortality exceeded prior efforts in detail and extent, and provided a new standard for documenting the effects of bleaching and for testing nowcast and forecast products. Collaborators from 22 countries undertook the most comprehensive documentation of basin-scale bleaching to date and found that over 80% of corals bleached and over 40% died at many sites. The most severe bleaching coincided with waters nearest a western Atlantic warm pool that was centered off the northern end of the Lesser Antilles. CONCLUSIONS/SIGNIFICANCE Thermal stress during the 2005 event exceeded any observed from the Caribbean in the prior 20 years, and regionally-averaged temperatures were the warmest in over 150 years. Comparison of satellite data against field surveys demonstrated a significant predictive relationship between accumulated heat stress (measured using NOAA Coral Reef Watch's Degree Heating Weeks) and bleaching intensity. This severe, widespread bleaching and mortality will undoubtedly have long-term consequences for reef ecosystems and suggests a troubled future for tropical marine ecosystems under a warming climate.This work was partially supported by salaries from the NOAA Coral Reef Conservation Program to the NOAA Coral Reef Conservation Program authors. NOAA provided funding to Caribbean ReefCheck investigators to undertake surveys of bleaching and mortality. Otherwise, no funding from outside authors' institutions was necessary for the undertaking of this study. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript

    Diversity of lactic acid bacteria of the bioethanol process

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Bacteria may compete with yeast for nutrients during bioethanol production process, potentially causing economic losses. This is the first study aiming at the quantification and identification of Lactic Acid Bacteria (LAB) present in the bioethanol industrial processes in different distilleries of Brazil.</p> <p>Results</p> <p>A total of 489 LAB isolates were obtained from four distilleries in 2007 and 2008. The abundance of LAB in the fermentation tanks varied between 6.0 × 10<sup>5 </sup>and 8.9 × 10<sup>8 </sup>CFUs/mL. Crude sugar cane juice contained 7.4 × 10<sup>7 </sup>to 6.0 × 10<sup>8 </sup>LAB CFUs. Most of the LAB isolates belonged to the genus <it>Lactobacillus </it>according to rRNA operon enzyme restriction profiles. A variety of <it>Lactobacillus </it>species occurred throughout the bioethanol process, but the most frequently found species towards the end of the harvest season were <it>L. fermentum </it>and <it>L. vini</it>. The different rep-PCR patterns indicate the co-occurrence of distinct populations of the species <it>L. fermentum </it>and <it>L. vini</it>, suggesting a great intraspecific diversity. Representative isolates of both species had the ability to grow in medium containing up to 10% ethanol, suggesting selection of ethanol tolerant bacteria throughout the process.</p> <p>Conclusions</p> <p>This study served as a first survey of the LAB diversity in the bioethanol process in Brazil. The abundance and diversity of LAB suggest that they have a significant impact in the bioethanol process.</p

    Contribution of NFP LysM Domains to the Recognition of Nod Factors during the Medicago truncatula/Sinorhizobium meliloti Symbiosis

    Get PDF
    The root nodule nitrogen fixing symbiosis between legume plants and soil bacteria called rhizobia is of great agronomical and ecological interest since it provides the plant with fixed atmospheric nitrogen. The establishment of this symbiosis is mediated by the recognition by the host plant of lipo-chitooligosaccharides called Nod Factors (NFs), produced by the rhizobia. This recognition is highly specific, as precise NF structures are required depending on the host plant. Here, we study the importance of different LysM domains of a LysM-Receptor Like Kinase (LysM-RLK) from Medicago truncatula called Nod factor perception (NFP) in the recognition of different substitutions of NFs produced by its symbiont Sinorhizobium meliloti. These substitutions are a sulphate group at the reducing end, which is essential for host specificity, and a specific acyl chain at the non-reducing end, that is critical for the infection process. The NFP extracellular domain (ECD) contains 3 LysM domains that are predicted to bind NFs. By swapping the whole ECD or individual LysM domains of NFP for those of its orthologous gene from pea, SYM10 (a legume plant that interacts with another strain of rhizobium producing NFs with different substitutions), we showed that NFP is not directly responsible for specific recognition of the sulphate substitution of S. meliloti NFs, but probably interacts with the acyl substitution. Moreover, we have demonstrated the importance of the NFP LysM2 domain for rhizobial infection and we have pinpointed the importance of a single leucine residue of LysM2 in that step of the symbiosis. Together, our data put into new perspective the recognition of NFs in the different steps of symbiosis in M. truncatula, emphasising the probable existence of a missing component for early NF recognition and reinforcing the important role of NFP for NF recognition during rhizobial infection
    corecore