417 research outputs found
Heterovalent interlayers and interface states: an ab initio study of GaAs/Si/GaAs (110) and (100) heterostructures
We have investigated ab initio the existence of localized states and
resonances in abrupt GaAs/Si/GaAs (110)- and (100)-oriented heterostructures
incorporating 1 or 2 monolayers (MLs) of Si, as well as in the fully developed
Si/GaAs (110) heterojunction. In (100)-oriented structures, we find both
valence- and conduction-band related near-band edge states localized at the
Si/GaAs interface. In the (110) systems, instead, interface states occur deeper
in the valence band; the highest valence-related resonances being about 1 eV
below the GaAs valence-band maximum. Using their characteristic bonding
properties and atomic character, we are able to follow the evolution of the
localized states and resonances from the fully developed Si/GaAs binary
junction to the ternary GaAs/Si/GaAs (110) systems incorporating 2 or 1 ML of
Si. This approach also allows us to show the link between the interface states
of the (110) and (100) systems. Finally, the conditions for the existence of
localized states at the Si/GaAs (110) interface are discussed based on a
Koster-Slater model developed for the interface-state problem.Comment: REVTeX 4, 14 pages, 15 EPS figure
Real space finite difference method for conductance calculations
We present a general method for calculating coherent electronic transport in
quantum wires and tunnel junctions. It is based upon a real space high order
finite difference representation of the single particle Hamiltonian and wave
functions. Landauer's formula is used to express the conductance as a
scattering problem. Dividing space into a scattering region and left and right
ideal electrode regions, this problem is solved by wave function matching (WFM)
in the boundary zones connecting these regions. The method is tested on a model
tunnel junction and applied to sodium atomic wires. In particular, we show that
using a high order finite difference approximation of the kinetic energy
operator leads to a high accuracy at moderate computational costs.Comment: 13 pages, 10 figure
Schottky barrier heights at polar metal/semiconductor interfaces
Using a first-principle pseudopotential approach, we have investigated the
Schottky barrier heights of abrupt Al/Ge, Al/GaAs, Al/AlAs, and Al/ZnSe (100)
junctions, and their dependence on the semiconductor chemical composition and
surface termination. A model based on linear-response theory is developed,
which provides a simple, yet accurate description of the barrier-height
variations with the chemical composition of the semiconductor. The larger
barrier values found for the anion- than for the cation-terminated surfaces are
explained in terms of the screened charge of the polar semiconductor surface
and its image charge at the metal surface. Atomic scale computations show how
the classical image charge concept, valid for charges placed at large distances
from the metal, extends to distances shorter than the decay length of the
metal-induced-gap states.Comment: REVTeX 4, 11 pages, 6 EPS figure
Collapse of the Mott gap and emergence of a nodal liquid in lightly doped SrIrO
Superconductivity in underdoped cuprates emerges from an unusual electronic
state characterised by nodal quasiparticles and an antinodal pseudogap. The
relation between this state and superconductivity is intensely studied but
remains controversial. The discrimination between competing theoretical models
is hindered by a lack of electronic structure data from related doped Mott
insulators. Here we report the doping evolution of the Heisenberg
antiferromagnet SrIrO, a close analogue to underdoped cuprates. We
demonstrate that metallicity emerges from a rapid collapse of the Mott gap with
doping, resulting in lens-like Fermi contours rather than disconnected Fermi
arcs as observed in cuprates. Intriguingly though, the emerging electron liquid
shows nodal quasiparticles with an antinodal pseudogap and thus bares strong
similarities with underdoped cuprates. We conclude that anisotropic pseudogaps
are a generic property of two-dimensional doped Mott insulators rather than a
unique hallmark of cuprate high-temperature superconductivity
Competition of Superconductivity and Antiferromagnetism in a d-Wave Vortex Lattice
The d-wave vortex lattice state is studied within the framework of
Bogoliubov-de Gennes (BdG) mean field theory. We allow antiferromagnetic (AFM)
order to develop self-consistently along with d-wave singlet superconducting
(dSC) order in response to an external magnetic field that generates vortices.
The resulting AFM order has strong peaks at the vortex centers, and changes
sign, creating domain walls along lines where .
The length scale for decay of this AFM order is found to be much larger than
the bare d-wave coherence length, . Coexistence of dSC and AFM order in
this system is shown to induce -triplet superconducting order. Competition
between different orders is found to suppress the local density of states at
the vortex center and comparison to recent experimental findings is discussed.Comment: 10 pages, 7 figure
Soil carbon stock impacts following reversion of Miscanthus x giganteus and short rotation coppice willow commercial plantations into arable cropping
There are posited links between the establishment of perennial bioenergy, such as Short Rotation Coppice (SRC) willow and Miscanthus x giganteus, on low carbon soils and enhanced soil C sequestration. Sequestration provides additional climate mitigation, however, few studies have explored impacts on soil C stocks of bioenergy crop removal, thus the permanence of any sequestered C is unclear. This uncertainty has led some authors to question the handling of soil C stocks with carbon accounting e.g. through LCA. Here we provide additional data for this debate, reporting on the soil C impacts of the reversion (removal and return) to arable cropping of commercial SRC willow and Miscanthus across four sites in the UK, two for each bioenergy crop, with 8 reversions nested within these sites. Using a pairedāsite approach, soil C stocks (0ā1 m) were compared between 3 and 7 years after bioenergy crop removal. Impacts on soil C stocks varied, ranging from an increase of 70.16 Ā± 10.81 Mg C haā1 7 years after reversion of SRC willow to a decrease of 33.38 Ā± 5.33 Mg C haā1 3 years after reversion of Miscanthus compared to paired arable land. The implications for carbon accounting will depend on the method used to allocate this stock change between current and past land use. However, with, published life cycle assessment values for the lifetime C reduction provided by these crops ranging from 29.50 to 138.55 Mg C haā1, the magnitude of these changes in stock are significant. We discuss the potential underlying mechanisms driving variability in soil C stock change, including the age of bioenergy crop at removal, removal methods, and differences in the recalcitrant of the crop residues, and highlight the need to design management methods to limit negative outcomes
Electronic structure of few-layer black phosphorus from -ARPES
Black phosphorus (BP) stands out among two-dimensional (2D) semiconductors
because of its high mobility and thickness dependent direct band gap. However,
the quasiparticle band structure of ultrathin BP has remained inaccessible to
experiment thus far. Here we use a recently developed laser-based micro-focus
angle resolved photoemission (-ARPES) system to establish the electronic
structure of 2-9 layer BP from experiment. Our measurements unveil ladders of
anisotropic, quantized subbands at energies that deviate from the scaling
observed in conventional semiconductor quantum wells. We quantify the
anisotropy of the effective masses and determine universal tight-binding
parameters which provide an accurate description of the electronic structure
for all thicknesses.Comment: Supporting Information available upon reques
Counter-current chromatography for the separation of terpenoids: A comprehensive review with respect to the solvent systems employed
Copyright @ 2014 The Authors.This article is distributed under the terms of the Creative Commons Attribution License which permits any use, distribution, and reproduction in any medium, provided the original author(s) and the source are credited.Natural products extracts are commonly highly complex mixtures of active compounds and consequently their purification becomes a particularly challenging task. The development of a purification protocol to extract a single active component from the many hundreds that are often present in the mixture is something that can take months or even years to achieve, thus it is important for the natural product chemist to have, at their disposal, a broad range of diverse purification techniques. Counter-current chromatography (CCC) is one such separation technique utilising two immiscible phases, one as the stationary phase (retained in a spinning coil by centrifugal forces) and the second as the mobile phase. The method benefits from a number of advantages when compared with the more traditional liquid-solid separation methods, such as no irreversible adsorption, total recovery of the injected sample, minimal tailing of peaks, low risk of sample denaturation, the ability to accept particulates, and a low solvent consumption. The selection of an appropriate two-phase solvent system is critical to the running of CCC since this is both the mobile and the stationary phase of the system. However, this is also by far the most time consuming aspect of the technique and the one that most inhibits its general take-up. In recent years, numerous natural product purifications have been published using CCC from almost every country across the globe. Many of these papers are devoted to terpenoids-one of the most diverse groups. Naturally occurring terpenoids provide opportunities to discover new drugs but many of them are available at very low levels in nature and a huge number of them still remain unexplored. The collective knowledge on performing successful CCC separations of terpenoids has been gathered and reviewed by the authors, in order to create a comprehensive document that will be of great assistance in performing future purifications. Ā© 2014 The Author(s)
Dynamic Interferometry Lithography on a TiO 2
International audienceSolar electricity is one of the most promising renewable energy resources. However, the ratio module's cost/energy produced remains a major issue for classical photovoltaic energy. Many technologies have been developed to solve this problem, by using micro-or nanostructuring on the solar cell or on the module. These kinds of structuring are often used as antireflection and light-trapping tools. In the meantime, other solar technologies are considered, such as concentration photovoltaic modules. This article presents a module combining both approaches, that is, nanostructures and concentration, in order to increase the module's profitability. Sol-gel derived TiO 2 diffraction gratings, made by dynamic interferometric lithography, are added on the top of the glass cover to deflect unused light onto the solar cell, increasing the module efficiency
- ā¦