242 research outputs found

    Distributed Hypothesis Testing with Privacy Constraints

    Full text link
    We revisit the distributed hypothesis testing (or hypothesis testing with communication constraints) problem from the viewpoint of privacy. Instead of observing the raw data directly, the transmitter observes a sanitized or randomized version of it. We impose an upper bound on the mutual information between the raw and randomized data. Under this scenario, the receiver, which is also provided with side information, is required to make a decision on whether the null or alternative hypothesis is in effect. We first provide a general lower bound on the type-II exponent for an arbitrary pair of hypotheses. Next, we show that if the distribution under the alternative hypothesis is the product of the marginals of the distribution under the null (i.e., testing against independence), then the exponent is known exactly. Moreover, we show that the strong converse property holds. Using ideas from Euclidean information theory, we also provide an approximate expression for the exponent when the communication rate is low and the privacy level is high. Finally, we illustrate our results with a binary and a Gaussian example

    Efficient dynamical nuclear polarization in quantum dots: Temperature dependence

    Full text link
    We investigate in micro-photoluminescence experiments the dynamical nuclear polarization in individual InGaAs quantum dots. Experiments carried out in an applied magnetic field of 2T show that the nuclear polarization achieved through the optical pumping of electron spins is increasing with the sample temperature between 2K and 55K, reaching a maximum of about 50%. Analysing the dependence of the Overhauser shift on the spin polarization of the optically injected electron as a function of temperature enables us to identify the main reasons for this increase.Comment: 5 pages, 3 figure

    Electrochemical polymerisation of phenol in aqueous solution on a Ta/PbO2 anode

    Get PDF
    This paper deals with the treatment of aqueous phenol solutions using an electrochemical technique. Phenol can be partly eliminated from aqueous solution by electrochemically initiated polymerisation. Galvanostatic electrolyses of phenol solutions at concentration up to 0.1 mol dm−3 were carried out on a Ta/PbO2 anode. The polymers formed are insoluble in acidic medium but soluble in alkaline. These polymers were filtered and then dissolved in aqueous solution of sodium hydroxide (1 mol dm−3). The polymers formed were quantified by total organic carbon (TOC) measurement. It was found that the conversion of phenol into polymers increases as a function of initial concentration, anodic current density, temperature, and solution pH. The percentage of phenol polymerised can reach 15%

    Quantitative imaging of dielectric permittivity and tunability with a near-field scanning microwave microscope

    Full text link
    We describe the use of a near-field scanning microwave microscope to image the permittivity and tunability of bulk and thin film dielectric samples on a length scale of about 1 micron. The microscope is sensitive to the linear permittivity, as well as to nonlinear dielectric terms, which can be measured as a function of an applied electric field. We introduce a versatile finite element model for the system, which allows quantitative results to be obtained. We demonstrate use of the microscope at 7.2 GHz with a 370 nm thick barium strontium titanate thin film on a lanthanum aluminate substrate. This technique is nondestructive and has broadband (0.1-50 GHz) capability. The sensitivity of the microscope to changes in relative permittivity is 2 at permittivity = 500, while the nonlinear dielectric tunability sensitivity is 10^-3 cm/kV.Comment: 12 pages, 10 figures, to be published in Rev. Sci. Instrum., July, 200

    Impact of heavy hole-light hole coupling on optical selection rules in GaAs quantum dots

    Full text link
    We report strong heavy hole-light mixing in GaAs quantum dots grown by droplet epitaxy. Using the neutral and charged exciton emission as a monitor we observe the direct consequence of quantum dot symmetry reduction in this strain free system. By fitting the polar diagram of the emission with simple analytical expressions obtained from k\cdotp theory we are able to extract the mixing that arises from the heavy-light hole coupling due to the geometrical asymmetry of the quantum dot.Comment: 4 pages, 2 figure

    Synthesis and electrochemical behavior of a model redox-active thiacalix[4]arene-tetrathiafulvalene assembly

    Get PDF
    Syntheses of the first bisthiacalix[4]arenes systems bridged by a tetrathiafulvalene (TTF) framework have been carried out through triethyl phosphite-mediated dechalcogenation dimerization of the corresponding 1,3-dithiole-2-ones. The cyclic voltammograms of the resulting bisthiacalix[4]arenes tethered by an electroactive TTF unit are provided, and exhibit an electrochemical response in the case of introduction of Ag+

    Heavy metal levels in tissues (gonads and fillets) of Horse mackerel collected from Ghazaouet Bay (Western Mediterranean coast of Algeria)

    Get PDF
    The concentration levels of Zn, Pb, Cd and Cu were evaluated in the gonads and fillets of Horse mackerel (Trachurus trachurus) collected from Ghazaouet bay. The results showed the accumulation of Pb, Cd, Cu and Zn in the gonads and fillets. The metal concentrations in the fillets and gonads decreased in the following order: Zn >Cd >Pb >Cu and Zn >Cd >Cu >Pb, respectively. The levels of essential metals (zinc and copper) in both target organs generally complied with the recommended value for fish while the levels of non-essential metals like cadmium and lead, which are toxic and present in traces, greatly exceeded the recommended values in both target organs, which are ascribed mainly to the industrial pollution in Ghazaouet area. Therefore, it can be concluded that these heavy metals in different tissues of Horse mackerel, which is highly consumed in the Algerian coastal regions, could pose adverse health effects on consumers

    Efficient Delivery of Hydrophilic Small Molecules to Retinal Cell Lines Using Gel Core-Containing Solid Lipid Nanoparticles

    Get PDF
    In this study, we developed a novel solid lipid nanoparticle (SLN) formulation for drug delivery of small hydrophilic cargos to the retina. The new formulation, based on a gel core and composite shell, allowed up to two-fold increase in the encapsulation efficiency. The type of hydrophobic polyester used in the composite shell mixture affected the particle surface charge, colloidal stability, and cell internalization profile. We validated SLNs as a drug delivery system by performing the encapsulation of a hydrophilic neuroprotective cyclic guanosine monophosphate analog, previously demonstrated to hold retinoprotective properties, and the best formulation resulted in particles with a size of ±250 nm, anionic charge > −20 mV, and an encapsulation efficiency of ±60%, criteria that are suitable for retinal delivery. In vitro studies using the ARPE-19 and 661W retinal cell lines revealed the relatively low toxicity of SLNs, even when a high particle concentration was used. More importantly, SLN could be taken up by the cells and the release of the hydrophilic cargo in the cytoplasm was visually demonstrated. These findings suggest that the newly developed SLN with a gel core and composite polymer/lipid shell holds all the characteristics suitable for the drug delivery of small hydrophilic active molecules into retinal cells

    Demagnetization of Quantum Dot Nuclear Spins: Breakdown of the Nuclear Spin Temperature Approach

    Full text link
    The physics of interacting nuclear spins arranged in a crystalline lattice is typically described using a thermodynamic framework: a variety of experimental studies in bulk solid-state systems have proven the concept of a spin temperature to be not only correct but also vital for the understanding of experimental observations. Using demagnetization experiments we demonstrate that the mesoscopic nuclear spin ensemble of a quantum dot (QD) can in general not be described by a spin temperature. We associate the observed deviations from a thermal spin state with the presence of strong quadrupolar interactions within the QD that cause significant anharmonicity in the spectrum of the nuclear spins. Strain-induced, inhomogeneous quadrupolar shifts also lead to a complete suppression of angular momentum exchange between the nuclear spin ensemble and its environment, resulting in nuclear spin relaxation times exceeding an hour. Remarkably, the position dependent axes of quadrupolar interactions render magnetic field sweeps inherently non-adiabatic, thereby causing an irreversible loss of nuclear spin polarization.Comment: 15 pages, 3 figure
    corecore