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Abstract: In this study, we developed a novel solid lipid nanoparticle (SLN) formulation for drug
delivery of small hydrophilic cargos to the retina. The new formulation, based on a gel core and com-
posite shell, allowed up to two-fold increase in the encapsulation efficiency. The type of hydrophobic
polyester used in the composite shell mixture affected the particle surface charge, colloidal stability,
and cell internalization profile. We validated SLNs as a drug delivery system by performing the
encapsulation of a hydrophilic neuroprotective cyclic guanosine monophosphate analog, previously
demonstrated to hold retinoprotective properties, and the best formulation resulted in particles
with a size of ±250 nm, anionic charge > −20 mV, and an encapsulation efficiency of ±60%, criteria
that are suitable for retinal delivery. In vitro studies using the ARPE-19 and 661W retinal cell lines
revealed the relatively low toxicity of SLNs, even when a high particle concentration was used. More
importantly, SLN could be taken up by the cells and the release of the hydrophilic cargo in the
cytoplasm was visually demonstrated. These findings suggest that the newly developed SLN with a
gel core and composite polymer/lipid shell holds all the characteristics suitable for the drug delivery
of small hydrophilic active molecules into retinal cells.

Keywords: drug delivery system; thermoresponsive polymer; rod photoreceptor; retinal pigment
epithelium

1. Introduction

Retinal degeneration is a disease condition characterized by the progressive loss of
highly differentiated cells within the neurosensory retina, such as photoreceptors, or the
retinal pigment epithelium (RPE). This condition is commonly found in patients with
diabetic retinopathy [1], age-related macular degeneration [2], and hereditary retinal degen-
eration [3]. Disease associated with retinal degeneration constitutes an important health
challenge that severely affects the quality of life of patients and has a significant socio-
economic impact [4]. Recently, hydrophilic cargos, like nucleic acids [5] or cGMP analog [6],
has attracted major interest for the development of new retinal disease treatments. These
hydrophilic cargos may require encapsulation in a nanocarrier to reach their intracellular
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targets. However, low encapsulation efficiency, undesired leakage, or initial burst release
are common issues affecting nanoparticulate drug delivery system (DDS) development [7].

Drug delivery to the retina is also notoriously difficult due to the presence of several
biological barriers [8,9]. In current clinical practice, intravitreal injections are routinely used
to administer treatments to the retina. This route allows the DDS to bypass several ocular
barriers, such as the corneal epithelium, the conjunctiva, and the sclera, while the vitreous
and internal limiting membrane (ILM) still need to be crossed. The main considerations of
DDS formulation in intravitreal injection routes are the particle size, surface charge, and
the functional materials used to enhance intracellular delivery. The vitreous has a gel-like
network structure with a pore size expected to be in the range of 500 nm [10]. Small drugs,
proteins, and nanoparticles may diffuse through the vitreous [10,11]. A negatively charged
surface and size below 500 nm are preferred qualities for a DDS because these features may
improve particle mobility [11,12]. When the drug requires intracellular targeting within the
retina, barriers at the level of the plasma membrane will limit its diffusion, especially for
hydrophilic molecules [13]. A DDS can help the delivery of the drug [8] and nanoparticles
composed of material that enhances endocytosis, such as solid lipid nanoparticles (SLN),
will likely improve the entrance of the active compound into the target cells [9,14,15].

The water-in-oil-in-water (W1/O/W2) emulsion method is generally used to prepare
lipid-based particles to encapsulate small hydrophilic molecules. Lipid-based particles
obtained via this method, such as liposomes, often have a low encapsulation efficiency
due to leakage from the core during preparation [16]. Other lipid-based particles, like
conventional SLNs, have limited space for the uptake of hydrophilic molecules [17] and
compounds may be expelled following the polymorphic transition of the structure during
storage [18]. To accommodate larger amounts of active molecules in the core of lipid-
based particles and prevent their premature release, the addition of a thermoresponsive gel
core [19] or of micelles [20,21] was shown to improve the encapsulation of the hydrophilic
cargo. Unfortunately, these studies used a large macromolecule (i.e., protein) as cargo and
the suitability for the direct translation of this DDS to the delivery of small hydrophilic
molecules into retinal cells is not readily available.

In this study, we evaluated the potential to adapt and modify SLN formulations origi-
nally intended for holding hydrophilic macromolecules as a suitable DDS for delivering
small hydrophilic molecules into retinal cells. First, we investigated the effect of adding
a thermoresponsive gel core inside the SLN in terms of encapsulation efficiency. We also
investigated the effect of adding a hydrophobic polyester to the SLN shell in regard to DDS
size, surface charge, and polydispersity. The small size, negative surface charge, stability,
encapsulation efficiency, low toxicity, and internalization capability in retinal cells in vitro
support the possible use of such SLNs for intravitreal delivery.

2. Materials and Methods
2.1. Materials

Poloxamer 407 (Sigma Aldrich, Prague, Czech Republic), poloxamer 188 (Applichem,
Prague, Czech Republic), rhodamine B (RhoB; Sigma Aldrich, Prague, Czech Republic),
Rp-8-Br-PET-cGMPS, also known as CN03 (provided by Research Institute of Sweden), glyc-
erol tripalmitate (GTP; Alfa Aesar, Kandel, Germany), soybean lecithin (LCT; VWR, Prague,
Czech Republic), stearic acid (SA; BASF, Prague, Czech Republic), 50/50 DL-lactide/glycolide
copolymer (PLGA; Corbion, Amsterdam, Netherlands), poly-ε-caprolactone 14 kDa (PCL;
Sigma Aldrich, Prague, Czech Republic), 8-aminonaphthalene-1,3,6-trisulfonic acid dis-
odium salt (ANTS; Biotium, Prague, Czech Republic), p-xylene-bis-pyridinium bromide
(DPX; Biotium, Prague, Czech Republic), dichloromethane (VWR, Prague, Czech Republic),
deionized water (VWR, Prague, Czech Republic), human adult retinal pigment epithelial
cells (ARPE-19 cell, ATCC), 661W cell (generously provided by Dr. Muayyad Al-Ubaidi,
University of Oklahoma), Dulbecco’s modified Eagle’s medium and Ham’s F12 nutrient
mixture (DMEM/F12; Gibco, Rodano, Italy), low glucose (1 mg/mL) Dulbecco’s mod-
ified Eagle’s medium (DMEM; Gibco, Rodano, Italy), fetal bovine serum (FBS; Gibco,
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Rodano, Italy), glutamine (Sigma Aldrich, Milan, Italy), penicillin–streptomycin (Sigma
Aldrich, Milan, Italy), Accutase® solution (Sigma-Aldrich, Milan, Italy), paraformaldehyde
(PFA; Sigma Aldrich, Milan, Italy), anti-Zonula occludens-1 (ZO-1) antibody (Invitrogen,
Rodano, Italy), goat anti-rabbit secondary antibody (Life Technologies, Rodano, Italy),
4′,6-diamidino-2-phenylindole, dihydrochloride (DAPI; Sigma Aldrich, Milan, Italy), colori-
metric methyl-thiazolyl diphenyl-tetrazolium bromide (MTT; Sigma Aldrich, Milan, Italy).
All purchased materials were used as received.

2.2. Nanoparticle Synthesis

The SLN formulation is illustrated in Figure 1A. A stock solution for W1-phase with-
out gel core was prepared by dissolving RhoB in deionized water to reach 10 mg/mL
concentration. For W1-phase stock with gel core, poloxamer 407 was added to the RhoB
solution to reach 40% w/v. To ensure complete dissolution, the poloxamer 407 solution
was dissolved at 4 ◦C for 48 h. The W2-phase stock solution was prepared by dissolving
poloxamer 188 in deionized water to reach 2% w/v concentration. The O-phase solution
was prepared by dissolving GTP, LCT, SA, and PCL or PLGA in 1 mL of dichloromethane
according to different formulation codes listed in Table S1. Finally, for the preparation of
blank and drug-loaded particles, deionized water or CN03 was added, respectively, in the
W1-phase instead of RhoB. Similarly, for release assays of the compound from SLN inside
the cell, ANTS (25 µM) and DPX (90 µM) were co-encapsulated in the W1-phase instead of
RhoB. ANTS and DPX, which form a fluorescence tracer and quencher pair, were chosen
based on previously published studies [22].
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Figure 1. Solid lipid nanoparticle (SLN) formulation. (A) Core gelation procedure of thermorespon-
sive poloxamer 407 and procedure for SLN generation with a size range of 200–250 nm. (B) Schematic
representation of SLN containing gel core and composite shell.

The synthesis was performed by adding 200 µL of W1-phase stock solution kept at
4–7 ◦C, using an ice bath, to 1 mL of O-phase solution, followed by sonication with a Q55
ultrasound probe (Qsonica, Newton, CT, USA) at 30% amplitude for 60 s without a pulse
to form the primary W1/O emulsion. Then, 4.8 mL of W2-phase solution was added into
the primary emulsion and sonicated to form W1/O/W2 emulsion (amplitude: 40% for 10 s
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followed by 20 s at 20% amplitude without a pulse). The solution was further diluted with
10 mL of W2-phase solution followed by sonication (amplitude: 20% for 30 s without a
pulse). The organic solvent was then removed by vacuum evaporation (P: 650 mmHg) at
room temperature for 20 min to form the nanoparticles. The resulting colloidal solution
was stirred for 4 h to ensure complete removal of dichloromethane.

2.3. Physicochemical Characterization
2.3.1. Dynamic Laser Scattering

Particle size distribution and hydrodynamic diameter were measured using NanoPhox
DLS equipment (Sympatec GmbH, Clausthal-Zellerfeld, Germany). Before the measure-
ment, concentrated particle solutions were diluted 5 times using 2% w/v poloxamer
188 solutions. The analyses were performed using a non-negative least square (NNLS) al-
gorithm integrated in Windox5 software (Sympatec GmbH, Clausthal-Zellerfeld, Germany).
Viscosity of the solutions was calibrated and validated using polystyrene bead standards.
For each sample, the measurement was repeated 3 times, each lasting 200 s.

2.3.2. Zeta Potential

The zeta potential of the particles was measured by Zetasizer equipment (Malvern
Panalytical Ltd., Malvern, UK). Samples were diluted 5 times using 10 mM phosphate
buffer, pH 7.4. For each sample, the measurement was repeated 3 times.

2.3.3. Morphological Analysis

SLN solutions, as described in Table S1, were synthesized without hydrophilic cargo
(i.e., blank particles) and analyzed using a transmission electron microscope (TEM). The
colloidal nanoparticle solutions were stained with 7% (w/v) phosphotungstic acid for
negative contrast. The morphological characterization of the particle was performed at a
TEM acceleration voltage of 120 kV.

2.3.4. Encapsulation Efficiency

Encapsulation efficiency (EE) was measured using an indirect method in which the
amount of unencapsulated cargo outside the particles was measured. Sample solutions
were filtered using a 100 kDa microcentrifuge membrane filter (Sartorius, Brno, Czech
Republic) (3 × 5 min, at 5000× g). The filtrate was collected and the amount of cargo
was quantified using equation 1. As there may be some loss of W1-Phase in the pipette
tips during synthesis, cargo loss was quantified to avoid overestimation of encapsulation
efficiency.

EE(%) =

(
1− cargo amount detected in f iltrate

Theoretical cargo amount− cargo loss in tips

)
× 100% (1)

RhoB and CN03 concentrations were quantified by measuring absorbance at 550 nm
and at 254 nm using a UV-spectrophotometer (Biomolecular device) and a high-pressure
liquid chromatography (HPLC) system (Dionex Ultimate 3000, ThermoFisher, Gothenburg,
Sweden), respectively. For HPLC, mobile phases A and B were 5 mM ammonium acetate
buffer, and acetonitrile, respectively. Five microliters of the sample was injected into the
column (Waters® XBridge C18 XP column, 50 × 3 mm). The HPLC quantification was
performed using the Chromeleon software (v7.2, ThermoFisher, Gothenburg, Sweden) by
calculating the peak area at the retention time of around 3.1 min. The experiment was
replicated 3 times for both UV-spectroscopy and HPLC.

2.3.5. Stability Study

Colloidal stability was assessed by monitoring the changes in size of the resulting
nanoparticles over time. Concentrated SLN solution was diluted in 10 mM PBS to reach
200 µg/mL concentration and stored in glass vials at either 25 ◦C or 4 ◦C for a period of
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4 weeks. At each time point, the vials were gently shaken by hand and brought to room
temperature prior to dynamic laser scattering analysis.

2.4. Cell Culture

The cells primarily affected in retinal degeneration are RPE and photoreceptors. For
this study we chose two retinal cell types: (i) ARPE-19, a spontaneously arising human
RPE cell line with normal karyotype [23]; (ii) 661W photoreceptor-like cells, derived from a
mouse retinal tumor generated in a transgenic mouse expressing the SV40 large T-antigen
under the control of the IRBP (interphotoreceptor retinoid-binding protein) promoter [24].
ARPE-19 cells were cultured in DMEM/F12 supplemented with 10% FBS and 1% penicillin–
streptomycin in an incubator at 5% CO2 and 37 ◦C. The murine photoreceptor 661W
cell line was cultured in low-glucose (1 mg/mL) DMEM supplemented with 10% FBS,
2 mM glutamine, and 1% penicillin-streptomycin in an incubator at 5% CO2 and 37 ◦C.
Approximately every three days, cells reached 70–80% confluence and were sub-cultured.

2.5. Fluorescence Microscopic Analysis and Immunofluorescence

Cells were seeded on glass coverslips in a 24-well plate at a density of 4 × 104 cells/well.
After 24 h, cells were exposed to RhoB-loaded SLN (RhoB-SLN). As control, cells were
treated with free RhoB solution at the same concentration (20 µM) as RhoB present in the
nanoparticle solution. A blank was prepared by incubating the cells with nanoparticles
containing no fluorophore.

For compound release assays, 24 h after seeding, ARPE-19 cells were treated with
medium containing 200 µg/mL blank SLN (blank); freely dissolved tracer (ANTS); free tracer
together with quencher (free ANTS/DPX), or 200 µg/mL SLN loaded with ANTS/DPX
(ANTS/DPX-SLN). After 5 h, the medium was replaced with fresh medium without any
particles or fluorophores and the incubation was continued for 24 h, 48 h, or 72 h.

After incubation, cells were rinsed with phosphate-buffered saline (PBS), fixed with 2%
PFA for 10 min, and nuclei were stained with 0.1 µg/mL DAPI. For immunofluorescence,
cells were incubated with anti-ZO-1 (1:100) primary antibody overnight at 4 ◦C. After three
washes with PBS, cells were incubated with Alexa Fluor® 488 goat anti-rabbit secondary
antibody (1:1000) and 0.1 µg/mL DAPI for 40 min at room temperature. Slides were
mounted with Mowiol 4–88 and cells were observed using the Zeiss Axio Imager A2
fluorescence microscope. Mean fluorescence intensity (MFI) of single cells was quantified
by ImageJ software (ncells ≥ 10).

2.6. Cell Viability Assay

Cell viability assay was performed by the colorimetric methyl-thiazolyl diphenyl-
tetrazolium bromide (MTT) assay previously published for 661W cells [25]. Cells were
seeded on 96-well plates at a density of 6000 cells/well. After treatment with SLN for
various times, the medium was aspirated and cells were incubated with 50 µL of 1 mg/mL
MTT solution for 90 min at 37 ◦C. The supernatant was removed, and the purple formazan
crystals were dissolved in 100 µL isopropanol. The plate was shaken for 10 min and
analyzed at 570 nm using a microplate reader (Labsystems Multiskan MCC/340, Fisher
Scientific, Rodano, Italy).

2.7. Flow Cytometry Analysis

ARPE-19 and 661W cells were seeded on 12-well plates at a density of 1 × 105 cells/well.
After treatment with control or SLN, cells were detached with 500 µL Accutase® and col-
lected by centrifugation at 300× g for 5 min at room temperature. The cells were washed
three times with 500 µL PBS and collected by centrifugation at 300× g for 5 min at room tem-
perature. The cell pellet was resuspended with 500 µL of PBS and RhoB fluorescence was
immediately analyzed using an Attune® NxT Acoustic Focusing Cytometer (ThermoFisher,
Rodano, Italy). The channel voltage and gain were maintained constant throughout the
whole analysis.
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2.8. Statistical Analysis

Data are presented as the means ± SEM (standard error of the mean). Student’s
t-test was applied to compare two groups. Analysis of variance (ANOVA) was used for
comparisons of data with greater than two groups. Post hoc comparisons were performed
with Bonferroni test. Significance was set at * p < 0.05, ** p < 0.01, and *** p < 0.001. All
statistical analyses were performed using SPSS (Statistics 21; IBM Inc., Bentoville, AR, USA).
Data for each statistical analysis were obtained from at least three independent experiments,
or three biological replicates for studies on cells.

3. Results
3.1. Generation and Characterization of Solid Lipid Nanoparticles Containing a Gel Core

The aim of this study was to develop a drug delivery system (DDS) to facilitate uptake
of hydrophilic molecules by retinal cells. Among common thermoresponsive gels, such as
poloxamer 407, chitosan, and hydroxypropyl methylcellulose (HPMG), which have been
previously studied [19], we chose poloxamer 407 as the gel core material, because gelling
can be easily induced by increasing temperature. For the lipidic shell, we used a mixture
of lecithin (LCT), tripalmitin (GTP), and stearic acid (SA), since this mixture has been
previously reported to be able to significantly enhance nanoparticle cellular uptake [26]. In
addition, we added hydrophobic polyester to the lipid mixture to create a composite shell
using biocompatible PCL and PLGA (Figure 1B). To evaluate encapsulation and cellular
uptake, we chose rhodamine B (RhoB; 479.02 g/mol) as a small hydrophilic cargo that can
be easily tracked during experiments. The summary of the generated SLN components is
reported in Table S1.

The addition of hydrophobic polyesters, such as PCL and PLGA, may improve the
particle polydispersity index (PDI) to less than 0.4 when used in combination with a gel core.
Moreover, all of the produced nanoparticles were anionic, as characterized by their zeta
potential. The addition of the gel core did not significantly affect the surface charge, e.g.,
SLN.03 (−27 ± 2.3 mV) versus SLN.06 (−24 ± 1.5 mV). On the other hand, the presence of
the gel core improved the encapsulation efficiency, e.g., SLN.02 (24 ± 0.8%) versus SLN.05
(48 ± 0.44%). Both types of particles with a gel core could encapsulate above 40% RhoB,
while particles with an aqueous core had RhoB encapsulation efficiency at around 20%,
regardless of the shell type. The addition of hydrophobic polyester to the shell formulation
had no detectable effect on the encapsulation efficiency (Figure 2A). The SLN morphology,
observed using TEM, confirmed that all the produced particles were smaller than 500 nm,
fulfilling the basic size requirement for mobility in the vitreous (Figure 2B).

Based on the analytical analyses of the generated SLN, we chose to focus on SLN.05 and
SLN.06 for further studies, since they showed an improvement in PDI and encapsulation
efficiency compared to conventional SLN with pure a lipid shell and no gel core (SLN.01).
We first validated the formulation for encapsulation capability of SLN.05 and SLN.06 using
a known compound previously shown to have neuroprotective properties in the retina, a
compound called CN03 [27]. Both SLNs were able to encapsulate CN03 and resulted in
negatively charged particles of 200–250 nm. We noticed a higher encapsulation efficiency
(i.e., ±15% increase) compared to RhoB when CN03 was used (Figure 2A). A colloidal
stability study was then performed with CN03-loaded SLN dispersed in a PBS solution.
The samples were stored at different storage temperatures for 4 weeks. An increase in
size (±30 nm) was observed in the SLN.05 colloidal solution after one week of storage
(data not shown). In comparison, the SLN.06 colloidal solution showed better size stability
within the study period. More importantly, the particle size was maintained below 300 nm,
regardless of storage temperature, within 1 month of storage (Figure 3).
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Figure 2. Characterization of SLNs. (A) Physicochemical characteristics of the generated SLN
compared to conventional SLN (SLN.01). Data are presented as mean ± SEM (standard error of
the mean), n = 3 independent experiments. Significance at * p < 0.05, ** p < 0.01, and *** p < 0.001;
ANOVA followed by Bonferroni’s post hoc test. Statistical analyses comparing SLN.05 and SLN.06
loaded with either RhoB or CN.03 were performed using Student’s t-test. (B) Representative images
of morphological analysis of blank SLNs without cargo using TEM. Scale bar: 500 nm.
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Figure 3. Stability study of nanoparticles containing CN03 in 10 mM PBS at different storage
temperatures. Stability of SLN.05 and SLN.06 stored in PBS at 25 ◦C and 4 ◦C was evaluated by
analyzing the particle sizes every week for up to 4 weeks. Data are presented as mean ± SEM
(standard error of the mean), n = 3 independent experiments. Significance at * p < 0.05 and ** p < 0.01;
ANOVA followed by Bonferroni’s post hoc test.

Taken together, all physicochemical characterization data show that SLN.05 and
SLN.06 have relatively good properties to be further in vitro validated as a potential DDS
for retinal cells.

3.2. Evaluation of SLN.05 and SLN.06 Toxicity to ARPE-19 and 661W Retinal Cell Lines

We used ARPE-19 cells (human retinal pigment epithelium cell line) and 661W cells
(mouse photoreceptor-like cell line) to evaluate the toxicity of SLNs on retinal cells. We
exposed ARPE-19 and 661W cells to either SLN.05 or SLN.06 at different concentrations
and evaluated toxicity by the MTT cell viability assay at different time points.

Both SLN.05 and SLN.06 showed increased toxicity in a dose-dependent manner and
a time-dependent manner (Figure 4A,B). Overall, SLN.05 showed higher toxicity in both
cell types. Toxicity of SLN.05 to ARPE-19 cells started to be detected at 200 µg/mL after 5 h
of exposure. Interestingly, 661W cells showed higher resistance to SLN.05 toxicity, because
200 µg/mL of SLN.05 did not significantly reduce 661W viability even after exposure for
24 h, but started to be toxic at 500 µg/mL. SLN.06 was less toxic to both cell lines, especially
to 661W cells. ARPE-19 cells could tolerate up to 500 µg/mL of SLN.06 within 5 h of
exposure, while 661W cells could tolerate up to 800 µg/mL of SLN.06 within 24 h exposure.
SLNs reduced viability of both ARPE-19 and 661W cells after 48 h of exposure.
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Figure 4. Toxicity of SLN to ARPE-19 and 661W retinal cell lines. Toxicity of SLN.05 and SLN.06 to
retinal cell lines was assessed by measuring the percentage of cell viability after exposure of SLN
at various concentrations and at different time points using MTT assay. Untreated cells (0 µg/mL)
were set as 100% cell viability and used as a control. (A) Percentage viability of ARPE-19 cells
after exposure to SLN.05 or SLN.06. (B) Percentage of 661W cells viability after exposure to SLN.05
or SLN.06. Data are presented as mean ± SEM (standard error of the mean), n = 3 independent
experiments. Significance at * p < 0.05, ** p < 0.01, *** p < 0.001; ANOVA followed by Bonferroni’s
post hoc test.

3.3. SLN.05 and SLN.06 Internalization by Retinal Cell Lines

To deliver small hydrophilic molecules to retinal cells, SLNs need to be efficiently
internalized by cells. To visualize SLN uptake, we used RhoB-loaded SLNs (RhoB-SLN).
Both RhoB-SLN.05 and RhoB-SLN.06 could be efficiently internalized by 661W cells, where
RhoB intensity in the cytosol increased in a concentration-dependent manner (Figure 5A,B).
To further confirm and quantify internalization efficiency of SLNs, we exposed 661W cells
to 200 µg/mL of RhoB-SLN.05 and RhoB-SLN.06 and quantified the fluorescence signal at
different time points by flow cytometry. Since free RhoB can also penetrate the cells, we
used cells treated with free RhoB suspension for 5 h as the control. Only 0.08% of 661W cells
were positive for RhoB after treatment with free RhoB for 5 h, indicating that RhoB diffusion
inside the cells was very low. One hour exposure to RhoB-loaded SLN was sufficient to
detect 3.28% of RhoB-positive 661W cells after incubation with RhoB-SLN.05 and 3.35% of
positive 661W cells after incubation with RhoB-SLN.06. The percentage of RhoB-positive
cells increased with longer incubation time (Figure 5C). Similarly, we observed the same
trend in SLN uptake by ARPE-19 cells (Figure S1). Taken together, these data indicate that
SLN.05 and SLN.06 can be internalized by both photoreceptor and RPE cell types.
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Figure 5. Internalization of SLN.05 or SLN.06 by 661W cells. (A) Visualization of internalized SLN by
661W cells using rhodamine B-loaded SLN (RhoB-SLN). Micrographs of internalized RhoB-SLN.05
or RhoB-SLN.06 (red signal) at various concentrations after 5 h of exposure. Nuclei were stained
with DAPI in blue. Scale bar: 10 µm. (B) Mean fluorescence intensity (MFI) of rhodamine B signal
inside the cells was quantified using the ImageJ software (ncells ≥ 10). (C) Histogram overlay of
RhoB relative fluorescence intensity and percentage of RhoB-positive cells (RhoB+) assessed by Flow
cytometry. R1: gating for selecting cell population; R2: gating to select RhoB+ cells based on blue laser
(BL2-A) detector; FSC-A: forward scattering channel; SSC-A: side scattering channel. Significance at
*** p < 0.001; ANOVA followed by Bonferroni’s post hoc test.
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We visually confirmed the intracellular localization of SLNs after being internalized
by the ARPE-19 cells by staining the membrane of the cells with an anti-ZO-1 antibody
(specific antibody that recognize a peripheral membrane protein in epithelial cells), and we
observed that RhoB-SLNs are localized inside the cytosol after the internalization process
(Figure 6A). To elucidate the mechanism of the internalization of SLN.05 and SLN.06 by
the photoreceptor cells, we exposed 661W cells to 200 µg/mL of RhoB-SLN.05 and RhoB-
SLN.06 for 1 h at either 37 ◦C or 4 ◦C. We observed that incubation at 4 ◦C highly limited
the uptake of Rho-SLNs, indicating an energy-dependent process rather than passive
membrane passage (Figure 6B). Based on the knowledge that most of the nanoparticles
are internalized by cells through endocytosis [28], these data confirmed that SLN.05 and
SLN.06 were taken up via an endocytic process rather than membrane permeation.

3.4. Encapsulated Cargo Release Inside the Cells

To evaluate if SLN.05 and SLN.06 can successfully release the cargo after being uptaken
by the cells, we performed a fluorescence leakage assay using ANTS/DPX, which has been
widely used to study vesicle leakage [29]. We encapsulated the ANTS fluorescent dye
together with its quencher DPX. Once the SLN shell breaks and releases the cargo inside
the cells, DPX will no longer be able to quench ANTS due to the increase of the molecular
distance between ANTS and DPX, which allows free ANTS inside the cells to emit green
fluorescence (Figure 7A). In this experiment, we exposed cells to either free ANTS or DPX,
which are not able to penetrate the cells, as controls. Only cells exposed to SLN.05 and
SLN.06 loaded with ANTS/DPX resulted in fluorescence, demonstrating that SLNs could
successfully deliver ANTS/DPX inside the cells and release the cargo (Figure 7B,C). A faint
signal could be detected at 24 h, but a full signal was easily detected after 48 h of exposure
(Figure 7C). Taken together, these data demonstrate that the new formulated SLNs are able
to release a hydrophilic molecule inside a retinal cell and can be an efficient drug delivery
system for the retina.
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Figure 6. Internalization of SLN.05 or SLN.06 by ARPE-19 cells. (A) Micrographs showing intracellu-
lar localization of RhoB-SLN.05 or RhoB-SLN.06 (red signal) in ARPE-19 cells. Cell membranes were
stained with anti-ZO-1 antibody (green). Nuclei of cells were stained with DAPI (blue). Scale bar:
10 µm. (B) Representative images showing temperature-dependent RhoB-SLN.05 or RhoB-SLN.06
(red signal) uptake by 661W cells at either 37 ◦C or 4 ◦C. Nuclei of cells were stained with DAPI in
blue. Scale bar: 10 µm.
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Figure 7. SLN.05 or SLN.06 cargo release inside the cells. Fluorescence leakage assay using
ANTS/DPX was used to determine cargo delivery and release by the SLN.05 or SLN.06 inside
the cells. (A) Schematic summary of fluorescence leakage assay using ANTS/DPX. (B) Schematic of
experimental design for fluorescence leakage assay. (C) Micrographs of ARPE-19 cells exposed to
ANTS/DPX-loaded SLN.05 and SLN.06. Released ANTS (green) was detectable only in cells exposed
to ANTS/DPX loaded into SLNs, and not in cells exposed to free ANTS and/or DPX. Nuclei of cells
were stained with DAPI in blue. Scale bar: 10 µm.

4. Discussion

The delivery of a drug to the neural retina is challenging due to the different barriers
that need to be crossed and the physicochemical environment of the vitreous that may affect
the passage of the drug to the target cells. In this study we presented new formulations
of nanoparticles that could enter retinal cells while having features that may facilitate
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navigation across the vitreous (e.g., size < 500 nm and anionic). The key findings from
the formulation development studies were: (i) the gel core improved the encapsulation
efficiency by up to 2-fold; (ii) the addition of hydrophobic polymer to the shell could be used
to tailor the surface charge of the final DDS. Our encapsulation efficiency results suggested
that the gel core could improve the small hydrophilic cargo retention during formulation.
This agreed with previous reports that used large macromolecules as cargo [19]. Most
likely, the improved retention came from the solidification of Poloxamer 407 emulsion
droplets. Poloxamer 407 droplets formed a nanogel thanks to a local increase in temperature
during the sonication process. Particle surface charge should be considered in terms
of cellular uptake. The cellular membrane is generally negatively charged and thus, a
strongly anionic particle will have more difficulty to enter the cells compared with a
cationic particle [30]. However, when the particle is cationic, it will have a tendency
to aggregate in the vitreous [11]. Thus, there is a need to tailor particle surface charge
during DDS development. The addition of polyester to the shell formulation reduced the
strong negative charge of the pure lipid SLN shell (SLN.01; −39 mV). The intensity of the
surface charge reduction differed based on the hydrophobic polymer used as a filler in the
composite SLN shell formulation (i.e., PCL and PLGA were used in this study). Particle
shells containing PCL (SLN.02; −15 mV) had a higher zeta potential reduction compared
to PLGA (SLN.03; −27 mV). The charge reduction, observed from adding PCL or PLGA
to create a composite shell, may indicate that the hydrophobic polymeric chains are well
distributed on the surface. The intensity of surface charge observed is very likely related
to the inherent surface charge of the polymer used. Based on this finding, the choice of
hydrophobic polymeric components in the composite SLN shell may be used to tailor
specific surface charges in further stages of DDS development.

The SLN formulation initially developed with RhoB, as the hydrophilic cargo, was
validated with a real drug for retinal degeneration (i.e., CN03). The freshly synthesized
CN03-loaded SLN particle size was maintained in the range of 200–250 nm. There was
a significant change in surface charge when CN03 salts were used instead of RhoB for
SLN.05. However, this was not observed in SLN.06. Without CN03 salts, SLN.05 (−13 mV)
had a less negative charge than SLN.06 (−24 mV). Thus, unencapsulated CN03 salts had a
weaker influence or had less surface absorption on a more negatively charged SLN. We also
observed an increase in polydispersity when CN03 salts were used as the cargo. Colloidal
system is a delicate particulate system, which is strongly influenced by the salts and pH
from the dispersing medium. The increase in polydispersity may come from the effect of
unencapsulated CN03 salts during the synthesis. Finally, there was an increase of about
15% in encapsulation efficiency of CN03 compared to RhoB. This may be due to the fact
that CN03, which is in a sodium salt form, has a much lower solubility in dichloromethane
compared to RhoB. Thus, RhoB, can possibly leak out from the W1 phase during the DDS
preparation compared to CN03. Based on this finding, we surmise that this DDS may also
work for other hydrophilic cargos with lower solubility in the organic solvent (e.g., DNA)
for different pharmaceutical application.

The colloidal stability study, which was the last checkpoint in this work prior to
in vitro studies, showed a ±30 nm increase in particle size for SLN.05 after the first week
of storage. The observed increase in particle size may be caused by the high concentration
of salts from PBS, which disrupts the colloidal solution stability. However, SLN.06, which
had a more negatively charged surface compared to SLN.05, showed a statistically better
stability profile throughout the study. This observation might come from the fact that
the magnitude of particle-to-particle repulsion, which could help prevent aggregation, is
proportional to the intensity of the particle surface charge. While SLN.06 may seem to
perform better than SLN.05 in terms of prolonged colloidal stability in salt solution, the
size of both SLNs was maintained below 300 nm throughout the stability study regardless
of the storage temperature and duration. Based on these characteristics, both SLN.05 and
SLN.06 were selected for in vitro studies using 661W and ARPE-19 cells.
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While both SLN.05 and SLN.06 caused time- and dose-dependent toxicity in the cells,
the in vitro cytotoxicity studies provided insight that the two retinal cell lines had different
sensitivity to these SLNs. This agreed with previous studies reporting that distinctive cell
physiology, proliferation rate, metabolic activity, membrane, and phagocytosis characteris-
tics are responsible for the different sensitivity to external factors [30,31]. Physicochemical
elements of nanoparticles can also affect the cytotoxicity of cells [30]. Specifically, distinct
shell composition of SLN.05 and SLN.06 may differently affect viability of retinal cells.
With regards to cytotoxicity, SLN.06 seemed to perform better than SLN.05 as a DDS.

Internalization studies in the two retinal cell types demonstrated that: (i) the SLN
formulation helped the internalization of small hydrophilic compounds; (ii) the SLN shell
component might be used to tailor the uptake rate in different cell types. We observed
that ARPE-19 cells had better uptake of SLN containing PCL in the shell (SLN.05). This
might be due to the fact that SLN.05 is less negatively charged compared to SLN.06
(Figure 2A) and the uptake level is directly affected by the physicochemical properties
of SLN, such as shape, size, and surface charge [32]. In 661W cells, the uptake profile
of SLN.06 nanoparticle was similar to that measured in APRE-19 cells and is limited to
a low percentage of cells internalized by the nanoparticles. For SLN.05, lower uptake
was observed in 661W compared to ARPE-19. This difference may be attributed to the
fact that uptake rates are also specific to each cell type [33]. It is not surprising that
photoreceptor cells have a lower uptake rate compared to ARPE-19 cells, because RPE
cells are characterized by a high rate of phagocytosis, which is one of their daily functions
to remove the apical part of photoreceptor outer segments [34]. The reduced uptake at
4 ◦C suggested that the SLN mainly enter the cells via endocytosis, as energy-dependent
endocytosis will be largely inhibited at this temperature [35–37]. We also demonstrated that
SLN could release their cargo after being internalized by the cells. This result highlights
that the newly developed DDS was appropriate for the encapsulation of small hydrophilic
drugs and for their release into the target cells.

Overall, both SLN.05 and SLN.06 could successfully improve the uptake of small
hydrophilic cargos into retinal cell lines in vitro. SLN.06 seemed to perform better as a
DDS when compared to SLN.05 considering its slight advantages in terms of stability and
cytotoxicity. Finally, while the relatively simple cell culture environment yielded interesting
data, full drug/DDS efficacy testing will likely require more complex test systems. More
advanced in vitro tests using in vivo injections or organotypic retinal explant cultures, in
which the normal histotypic context of the retina is preserved [38], will further characterize
the suitability of the new SLN for delivery to the retina. The fate of SLN materials after being
broken down inside the cells, and the specific mechanism on how they are metabolized,
will be the focus of further research. Nevertheless, based on these developments and initial
validation studies, our work may open new perspectives for developing a treatment for
retinal diseases based on SNL with small hydrophilic cargos.

5. Conclusions

This study presents an SLN formulation capable of encapsulating a small hydrophilic
cargo and delivering it to retinal cells in vitro. The study highlighted that a gel core could
significantly increase the encapsulation efficiency of small hydrophilic cargo inside the
SLN (i.e., up to ±60% with a gel core compared to initial ±20% with only an aqueous core).
We also observed that the type of hydrophobic polymer used in the composite shell may
affect the particle surface charge, a key factor for intravitreal drug delivery systems. The
physicochemical properties of the DDS developed using RhoB were retained when the
neuroprotective cGMP analog CN03 was used as a cargo. The SLN maintained its particle
size below 300 nm after 1 month of storage in PBS. The in vitro study demonstrated that the
DDS could be taken up by model retinal cell lines (i.e., ARPE-19 and 661W), with different
uptake rates based on the particle shell composition and cell type. Equally importantly, the
DDS could release its cargo inside the cells. While the current results are promising for an
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early-stage formulation development study, more complex in vivo studies are needed to
demonstrate the clinical relevance of the newly developed DDS.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/pharmaceutics14010074/s1, Table S1. Formulation code and component mass dissolved in
O-phase for each formulation, Figure S1. Flow cytometry analysis of ARPE-19 cells positive for RhoB
after incubation with 200 µg/mL RhoB-SLN.05 or RhoB/SLN.06 at different time point.
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