48 research outputs found

    Topographical analysis of the subependymal zone neurogenic niche

    Get PDF
    The emerging model for the adult subependymal zone (SEZ) cell population indicates that neuronal diversity is not generated from a uniform pool of stem cells but rather from diverse and spatially confined stem cell populations. Hence, when analysing SEZ proliferation, the topography along the anterior-posterior and dorsal-ventral axes must be taken into account. However, to date, no studies have assessed SEZ proliferation according to topographical specificities and, additionally, SEZ studies in animal models of neurological/psychiatric disorders often fail to clearly specify the SEZ coordinates. This may render difficult the comparison between studies and yield contradictory results. More so, by focusing in a single spatial dimension of the SEZ, relevant findings might pass unnoticed. In this study we characterized the neural stem cell/progenitor population and its proliferation rates throughout the rat SEZ anterior-posterior and dorsal-ventral axes. We found that SEZ proliferation decreases along the anterior-posterior axis and that proliferative rates vary considerably according to the position in the dorsal-ventral axis. These were associated with relevant gradients in the neuroblasts and in the neural stem cell populations throughout the dorsal-ventral axis. In addition, we observed spatially dependent differences in BrdU/Ki67 ratios that suggest a high variability in the proliferation rate and cell cycle length throughout the SEZ; in accordance, estimation of the cell cycle length of the neuroblasts revealed shorter cell cycles at the dorsolateral SEZ. These findings highlight the need to establish standardized procedures of SEZ analysis. Herein we propose an anatomical division of the SEZ that should be considered in future studies addressing proliferation in this neural stem cell niche.Fundação para a Ciência e a Tecnologia (FCT

    Characterization of Parameters Required for Effective Use of Tamoxifen-Regulated Recombination

    Get PDF
    Conditional gene targeting using the Cre-loxp system is a well established technique in numerous in vitro and in vivo systems. Ligand regulated forms of Cre have been increasingly used in these applications in order to gain temporal and spatial control over conditional targeting. The tamoxifen-regulated Cre variant mer-Cre-mer (mCrem) is widely utilized because of its reputation for tight regulation in the absence of its tamoxifen ligand. In the DT40 chicken B cell line, we generated an mCrem-based reversible switch for conditional regulation of a transgene, and in contrast with previous work, observed significant constitutive activity of mCrem. This prompted us to use our system for analysis of the parameters governing tamoxifen-regulated mCrem recombination of a genomic target. We find that robust mCrem expression correlates with a high level of tamoxifen-independent Cre activity, while clones expressing mCrem at the limit of western blot detection exhibit extremely tight regulation. We also observe time and dose-dependent effects on mCrem activity which suggest limitations on the use of conditional targeting approaches for applications which require tight temporal coordination of Cre action within a cell population

    Biochar based cathode enriched with hydroxyapatite and Cu nanoparticles boosting electromethanogenesis

    No full text
    Electromethanogenesis is an innovative technology addressing the need of storing renewable energy from un- programmable sources. It allows for the electrochemical production of methane from CO2-rich wastes on mi- crobial cathodes, in a logic of power-to-gas (BEP2G). The challenge of cost-effective and sustainable biocathodes enhancing the microorganism performance and yield of electromethanogenesis is approached in this work. For the first time, porous carbonaceous cathodes were functionalized with Cu nanoparticles and hydroxyapatite (HAP) and successfully experimented for supporting microbial CO2 reduction reaction (CO2RR) to methane. Tests were performed in a double chamber system under CO2 flow at 45 ◦C. Next Generation Sequencing of 16S RNA indicated that the microbial pool on the cathodes was mostly enriched in Metanobacteriaceae (hydrogenotrophic Archaea) and different fermenting bacteria, depending on the cathode type. High methane production on cathodes made of Cu 20%, HAP 10%, and carbon balance (20Cu/10HAP) was achieved, with a maximum of 866 ± 199 mmol m− 2 d− 1 (projected cathode area, Coulombic efficiency of 64%), corresponding to values compa- rable to the maximum in literature, but in shorter timespans (8 vs. 30 days). The documented effect of pH sta- bilization in the cathodic chamber by HAP was one of the main parameters that concurred to the selectivity of CO2RR towards methane

    Novel ruthenium(II) complexes with substituted 1,10-phenanthroline or 4,5-diazafluorene linked to a fullerene as highly active second order NLO chromophores

    No full text
    Various Ru(II) complexes with substituted 1,10-phenanthroline or 4,5-diazafluorene are characterized by a good to very large second order NLO response, as determined by EFISH. Among these complexes, [Ru(9-fulleriden-4,5-diazafluorene)(PPh3)(2)Cl-2] is particularly appealing due to its huge second-order NLO response and its transparency to the second harmonic generation. The structure of cis-Cl,trans-PPh3-[Ru(5-NO2-1,10-phen)(PPh3)(2)Cl-2)] was determined by single-crystal X-ray diffraction

    DIFFERENTIAL REGULATION OF NOTCH SIGNAL TRANSDUCTION IN LEUKAEMIA AND LYMPHOMA CELLS IN CULTURE

    No full text
    The transduction of Notch signal plays an intricate role in cell differentiation and pathogenesis of haematological malignancies as well as in certain congenital conditions. We found no genomic changes in either gene in 34 leukaemic samples and 25 leukaemia and lymphoma cell lines. The functionality of Notch signalling was tested using HES1 gene activation. We show that Notch signalling is differentially regulated in T-acute lymphoblastic leukaemia (ALL) and B-lymphoma cells. The Notch pathway is intact in a majority of B-lymphoma cell lines, but EBNA2, which mimics notch function, can occasionally activate the pathway. In contrast, the Notch pathway is constitutively active in T-ALL. This is the first demonstration of a distinction between B-lymphomas and T-cell leukaemias in the functioning of the Notch-signalling pathway. This might be related to their pathogenesis

    Mechanistic insights into acetophenone transfer hydrogenation catalyzed by half-sandwich ruthenium(II) complexes containing 2-(diphenylphosphanyl)aniline - a combined experimental and theoretical study

    No full text
    Several new half-sandwich ruthenium(II) complexes containing 2-(diphenyphosphanyl)aniline (PNH2) of formula {Ru[(kappa P-2,N)PNH2](p-cymene)Cl}Y [Y = Cl (1a), PF6 (1b), BF4 (1c), BPh4 (1d), TfO (1e)] were synthesized and fully characterized both in solution (H-1 NMR and P-31{H-1) NMR spectroscopy) and in the solid state (FTIR, X-ray analysis on single crystal). Complexes 1a and 1b are active precatalysts in the hydrogen transfer reaction of acetophenone, leading to tof values up to 4440h(-1). In comparison, the {Ru[(kappa P-2,N)-PNMe2](p-cymene)Cl}Cl complex leads to a tof value of 100 h(-1) under the same catalytic conditions. The mechanism through which the precatalysts operate was deeply explored by high-resolution MS (ESI) and DFT/PCM studies. The results reveal that the complexes containing PNH2 operate through a bifunctional mechanism analogous to that proposed for diamines and amino alcohol ligands
    corecore