1,284 research outputs found

    Commensurate and Incommensurate Vortex States in Superconductors with Periodic Pinning Arrays

    Full text link
    As a function of applied field, we find a rich variety of ordered and partially-ordered vortex lattice configurations in systems with square or triangular arrays of pinning sites. We present formulas that predict the matching fields at which commensurate vortex configurations occur and the vortex lattice orientation with respect to the pinning lattice. Our results are in excellent agreement with recent imaging experiments on square pinning arrays [K. Harada et al., Science 274, 1167 (1996)].Comment: 9 pages, 3 figures. Accepted to Physical Review

    Characterization of immune response to neurofilament light in experimental autoimmune encephalomyelitis

    Get PDF
    PMCID: PMC3856490This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.PMCID: PMC385649

    Deformation and Depinning of Superconducting Vortices from Artificial Defects: A Ginzburg-Landau Study

    Full text link
    Using Ginzburg-Landau theory, we have performed detailed studies of vortices in the presence of artificial defect arrays, for a thin film geometry. We show that when a vortex approaches the vicinity of a defect, an abrupt transition occurs in which the vortex core develops a ``string'' extending to the defect boundary, while simultaneously the supercurrents and associated magnetic flux spread out and engulf the defect. Current induced depinning of vortices is shown to be dominated by the core string distortion in typical experimental situations. Experimental consequences of this unusual depinning behavior are discussed.Comment: 10 pages,9 figure

    Multiply quantized vortices in trapped Bose-Einstein condensates

    Full text link
    Vortex configurations in rotating Bose-Einstein condensed gases trapped in power-law and anharmonic potentials are studied. When the confining potential is steeper than harmonic in the plane perpendicular to the axis of rotation, vortices with quantum numbers larger than one are energetically favorable if the interaction is weak enough. Features of the wave function for small and intermediate rotation frequencies are investigated numerically.Comment: 9 pages, 6 figures. Revised and extended article following referee repor

    Solution-processable thienoisoindigo-based molecular donors for organic solar cells with high open-circuit voltage

    Get PDF
    Two acetylene-bridged Donor–Acceptor–Donor (D-A-D) type small pi-conjugated molecules involving triphenylamine or N-phenylcarbazole as donor blocks (D) and thienoisoindigo as the acceptor unit (A) were synthesized and characterized by UV–Vis absorption and cyclic voltammetry. These donor materials were mixed with [6,6]-phenyl-C61-butyric acid methyl ester to prepare bulk heterojunction solar cells by simple solution processing. Due to their low-lying highest occupied molecular orbital energy levels, high open-circuit voltages up to 0.99 V were measured. The triphenylamine end-capped derivative led to the best power conversion efficiency of ca 2.20%, which ranks among the highest reported value for thienoisoindigo-based materials

    Critical Currents, Pinning Forces and Irreversibility Fields in (YxTml-x)Ba2Cu3O7 Single Crystals with Columnar Defects in Fields up to 50 T

    Full text link
    We have studied the influence of columnar defects, created by heavy-ion (Kr) irradiation with doses up to 6 10^11 Kr-ions/cm2, on the superconducting critical parameters of single crystalline (YxTm1-x)Ba2Cu3O7. Magnetisation measurements in pulsed fields up to 50 T in the temperature range 4.2 - 90 K revealed that: (i) in fields up to T the critical current Jc(H,T) is considerably enhanced and (ii) down to temperatures T ~ 40 K the irreversibility field Hirr(T) is strongly increased. The field range and magnitude of the Jc(H,T) and Hirr(T) enhancement increase with increasing irradiation dose. To interpret these observations, an effective matching field was defined. Moreover, introducing columnar defects also changes the pinning force fp qualitatively. Due to stronger pinning of flux lines by the amorphous defects, the superconducting critical parameters largely exceed those associated with the defect structures in the unirradiated as-grown material: Jc,irrad(77 K, 5 T) ^3 10* Jc,ref(77 K, 5 T).Comment: 11 pages, all PDF, contribution to Physica
    corecore