14,129 research outputs found
An Enhanced Perturbational Study on Spectral Properties of the Anderson Model
The infinite- single impurity Anderson model for rare earth alloys is
examined with a new set of self-consistent coupled integral equations, which
can be embedded in the large expansion scheme ( is the local spin
degeneracy). The finite temperature impurity density of states (DOS) and the
spin-fluctuation spectra are calculated exactly up to the order . The
presented conserving approximation goes well beyond the -approximation
({\em NCA}) and maintains local Fermi-liquid properties down to very low
temperatures. The position of the low lying Abrikosov-Suhl resonance (ASR) in
the impurity DOS is in accordance with Friedel's sum rule. For its shift
toward the chemical potential, compared to the {\em NCA}, can be traced back to
the influence of the vertex corrections. The width and height of the ASR is
governed by the universal low temperature energy scale . Temperature and
degeneracy -dependence of the static magnetic susceptibility is found in
excellent agreement with the Bethe-Ansatz results. Threshold exponents of the
local propagators are discussed. Resonant level regime () and intermediate
valence regime () of the model are thoroughly
investigated as a critical test of the quality of the approximation. Some
applications to the Anderson lattice model are pointed out.Comment: 19 pages, ReVTeX, no figures. 17 Postscript figures available on the
WWW at http://spy.fkp.physik.th-darmstadt.de/~frithjof
Longitudinal vortices in a transitioning boundary layer
Naturally occurring spanwise variations of the streamwise velocity component, characteristic of longitudinal vortices embedded in a transitioning boundary layer were explored using hot-wire anemometers. A vibrating ribbon introduced stable or unstable Tollmien-Schlichting waves into the laminar boundary layer. These damped or growing disturbances always developed a strong three dimensional pattern even though no spanwise perturbations were artificially induced. Changing the radius of the leading edge and other modifications to the flat plate, wind tunnel and boundary layer did not alter the spanwise wavelength of the vortices
Dynamics of large anisotropic spin in a sub-ohmic dissipative environment close to a quantum-phase transition
We investigate the dynamics of a large anisotropic spin whose easy-axis
component is coupled to a bosonic bath with a spectral function J(\w)\propto
\omega^s. Such a spin complex might be realized in a single-molecular magnet.
Using the non-perturbative renormalization group, we calculate the line of
quantum-phase transitions in the sub-ohmic regime (). These quantum-phase
transitions only occur for integer spin . For half-integer , the low
temperature fixed-point is identical to the fixed-point of the spin-boson model
without quantum-tunneling between the two levels. Short-time coherent
oscillations in the spin decay prevail even into the localized phase in the
sub-ohmic regime. The influence of the reorganization energy and the recurrence
time on the decoherence in the absence of quantum-tunneling is discussed.Comment: 14 pages,7 figure
A Numerical Renormalization Group approach to Green's Functions for Quantum Impurity Models
We present a novel technique for the calculation of dynamical correlation
functions of quantum impurity systems in equilibrium with Wilson's numerical
renormalization group. Our formulation is based on a complete basis set of the
Wilson chain. In contrast to all previous methods, it does not suffer from
overcounting of excitation. By construction, it always fulfills sum rules for
spectral functions. Furthermore, it accurately reproduces local thermodynamic
expectation values, such as occupancy and magnetization, obtained directly from
the numerical renormalization group calculations.Comment: 13 pages, 7 figur
Ab initio study of a mechanically gated molecule: From weak to strong correlation
The electronic spectrum of a chemically contacted molecule in the junction of
a scanning tunneling microscope can be modified by tip retraction. We analyze
this effect by a combination of density functional, many-body perturbation and
numerical renormalization group theory, taking into account both the
non-locality and the dynamics of electronic correlation. Our findings, in
particular the evolution from a broad quasiparticle resonance below to a narrow
Kondo resonance at the Fermi energy, correspond to the experimental
observations.Comment: 4 pages, 3 figure
Influence of Correlated Hybridization on the Conductance of Molecular Transistors
We study the spin-1/2 single-channel Anderson impurity model with correlated
(occupancy dependent) hybridization for molecular transistors using the
numerical renormalization-group method. Correlated hybridization can induce
nonuniversal deviations in the normalized zero-bias conductance and, for some
parameters, modestly enhance the spin polarization of currents in applied
magnetic field. Correlated hybridization can also explain a gate-voltage
dependence to the Kondo scale similar to what has been observed in recent
experiments.Comment: 4 pages, 5 figure
From ferromagnetism to spin-density wave: Magnetism in the two channel periodic Anderson model
The magnetic properties of the two-channel periodic Anderson model for
uranium ions, comprised of a quadrupolar and a magnetic doublet are
investigated through the crossover from the mixed-valent to the stable moment
regime using dynamical mean field theory. In the mixed-valent regime
ferromagnetism is found for low carrier concentration on a hyper-cubic lattice.
The Kondo regime is governed by band magnetism with small effective moments and
an ordering vector \q close to the perfect nesting vector. In the stable
moment regime nearest neighbour anti-ferromagnetism dominates for less than
half band filling and a spin density wave transition for larger than half
filling. is governed by the renormalized RKKY energy scale \mu_{eff}^2
^2 J^2\rho_0(\mu).Comment: 4 pages, RevTeX, 3 eps figure
- …