1,170 research outputs found

    The effects of binaural spectral resolution mismatch on Mandarin speech perception in simulated electric hearing

    Get PDF
    This study assessed the effects of binaural spectral resolution mismatch on the intelligibility of Mandarin speech in noise using bilateral cochlear implant simulations. Noise-vocoded Mandarin speech, corrupted by speech-shaped noise at 0 and 5 dB signal-to-noise ratios, were presented unilaterally or bilaterally to normal-hearing listeners with mismatched spectral resolution between ears. Significant binaural benefits for Mandarin speech recognition were observed only with matched spectral resolution between ears. In addition, the performance of tone identification was more robust to noise than that of sentence recognition, suggesting factors other than tone identification might account more for the degraded sentence recognition in noise.published_or_final_versio

    Generating GHZ state in 2m-qubit spin network

    Full text link
    We consider a pure 2m-qubit initial state to evolve under a particular quantum me- chanical spin Hamiltonian, which can be written in terms of the adjacency matrix of the Johnson network J(2m;m). Then, by using some techniques such as spectral dis- tribution and stratification associated with the graphs, employed in [1, 2], a maximally entangled GHZ state is generated between the antipodes of the network. In fact, an explicit formula is given for the suitable coupling strengths of the hamiltonian, so that a maximally entangled state can be generated between antipodes of the network. By using some known multipartite entanglement measures, the amount of the entanglement of the final evolved state is calculated, and finally two examples of four qubit and six qubit states are considered in details.Comment: 22 page

    Nucleon-Nucleon Correlations and Two-Nucleon Currents in Exclusive (e,eNNe,e'NN) Reactions

    Get PDF
    The contributions of short-range nucleon-nucleon (NN) correlations, various meson exchange current (MEC) terms and the influence of Δ\Delta isobar excitations (isobaric currents, IC) on exclusive two-nucleon knockout reactions induced by electron scattering are investigated. The nuclear structure functions are evaluated for nuclear matter. Realistic NN interactions derived in the framework of One-Boson-Exchange model are employed to evaluate the effects of correlations and MEC in a consistent way. The correlations correlations are determined by solving the Bethe-Goldstone equation. This yields significant contributions to the structure functions W_L and W_T of the (e,e'pn) and (e,e'pp) reactions. These contributions compete with MEC corrections originating from the π\pi and ρ\rho exchange terms of the same interaction. Special attention is paid to the so-called 'super parallel' kinematics at momentum transfers which can be measured e.g. at MAMI in Mainz.Comment: 14 pages, 8 figures include

    Overlap functions in correlation methods and quasifree nucleon knockout from 16^{16}O

    Get PDF
    The cross sections of the (e,eNe,e'N) and (γ,p\gamma,p) reactions on 16^{16}O are calculated, for the transitions to the 1/21/2^{-} ground state and the first 3/23/2^{-} excited state of the residual nucleus, using single-particle overlap functions obtained on the basis of one-body density matrices within different correlation methods. The electron-induced one-nucleon knockout reaction is treated within a nonrelativistic DWIA framework. The theoretical treatment of the (γ,p\gamma,p) reaction includes both contributions of the direct knockout mechanism and of meson-exchange currents. The results are sensitive to details of the different overlap functions. The consistent analysis of the reaction cross sections and the comparison with the experimental data make it possible to study the nucleon--nucleon correlation effects.Comment: 26 pages, LaTeX, 5 Postscript figures, submitted to PR

    Meson exchange currents in electromagnetic one-nucleon emission

    Get PDF
    The role of meson exchange currents (MEC) in electron- and photon-induced one-nucleon emission processes is studied in a nonrelativistic model including correlations and final state interactions. The nuclear current is the sum of a one-body and of a two-body part. The two-body current includes pion seagull, pion-in-flight and the isobar current contributions. Numerical results are presented for the exclusive 16O(e,e'p)15N and 16O(\gamma,p)15N reactions. MEC effects are in general rather small in (e,e'p), while in (\gamma,p) they are always large and important to obtain a consistent description of (e,e'p) and (\gamma,p) data, with the same spectroscopic factors. The calculated (\gamma,p) cross sections are sensitive to short-range correlations at high values of the recoil momentum, where MEC effects are larger and overwhelm the contribution of correlations.Comment: 9 pages, 6 figure

    Correlation effects in single-particle overlap functions and one-nucleon removal reactions

    Get PDF
    Single-particle overlap functions and spectroscopic factors are calculated on the basis of the one-body density matrices (ODM) obtained for the nucleus 16O^{16}O employing different approaches to account for the effects of correlations. The calculations use the relationship between the overlap functions related to bound states of the (A-1)-particle system and the ODM for the ground state of the A-particle system. The resulting bound-state overlap functions are compared and tested in the description of the experimental data from (p,d) reactions for which the shape of the overlap function is important.Comment: 11 pages, 4 figures include

    Logarithmic two-point correlators in the Abelian sandpile model

    Full text link
    We present the detailed calculations of the asymptotics of two-site correlation functions for height variables in the two-dimensional Abelian sandpile model. By using combinatorial methods for the enumeration of spanning trees, we extend the well-known result for the correlation σ1,11/r4\sigma_{1,1} \simeq 1/r^4 of minimal heights h1=h2=1h_1=h_2=1 to σ1,h=P1,hP1Ph\sigma_{1,h} = P_{1,h}-P_1P_h for height values h=2,3,4h=2,3,4. These results confirm the dominant logarithmic behaviour σ1,h(chlogr+dh)/r4+O(r5)\sigma_{1,h} \simeq (c_h\log r + d_h)/r^4 + {\cal O}(r^{-5}) for large rr, predicted by logarithmic conformal field theory based on field identifications obtained previously. We obtain, from our lattice calculations, the explicit values for the coefficients chc_h and dhd_h (the latter are new).Comment: 28 page

    One Body Density Matrix, Natural Orbits and Quasi Hole States in 16O and 40Ca

    Get PDF
    The one body density matrix, momentum distribution, natural orbits and quasi hole states of 16O and 40Ca are analyzed in the framework of the correlated basis function theory using state dependent correlations with central and tensor components. Fermi hypernetted chain integral equations and single operator chain approximation are employed to sum cluster diagrams at all orders. The optimal trial wave function is determined by means of the variational principle and the realistic Argonne v8' two-nucleon and Urbana IX three-nucleon interactions. The correlated momentum distributions are in good agreement with the available variational Monte Carlo results and show the well known enhancement at large momentum values with respect to the independent particle model. Diagonalization of the density matrix provides the natural orbits and their occupation numbers. Correlations deplete the occupation number of the first natural orbitals by more than 10%. The first following ones result instead occupied by a few percent. Jastrow correlations lower the spectroscopic factors of the valence states by a few percent (~1-3%) and an additional ~8-12% depletion is provided by tensor correlations. It is confirmed that short range correlations do not explain the spectroscopic factors extracted from (e,e'p) experiments. 2h-1p perturbative corrections in the correlated basis are expected to provide most of the remaining strength, as in nuclear matter.Comment: 25 pages, 9 figures. Submitted to Phys.Rev.

    The plant traits that drive ecosystems: Evidence from three continents.

    Get PDF
    Question: A set of easily‐measured (‘soft’) plant traits has been identified as potentially useful predictors of ecosystem functioning in previous studies. Here we aimed to discover whether the screening techniques remain operational in widely contrasted circumstances, to test for the existence of axes of variation in the particular sets of traits, and to test for their links with ‘harder’ traits of proven importance to ecosystem functioning. Location: central‐western Argentina, central England, northern upland Iran, and north‐eastern Spain. Recurrent patterns of ecological specialization: Through ordination of a matrix of 640 vascular plant taxa by 12 standardized traits, we detected similar patterns of specialization in the four floras. The first PCA axis was identified as an axis of resource capture, usage and release. PCA axis 2 appeared to be a size‐related axis. Individual PCA for each country showed that the same traits remained valuable as predictors of resource capture and utilization in all of them, despite their major differences in climate, biogeography and land‐use. The results were not significantly driven by particular taxa: the main traits determining PCA axis 1 were very similar in eudicotyledons and monocotyledons and Asteraceae, Fabaceae and Poaceae. Links between recurrent suites of ‘soft’ traits and ‘hard’ traits: The validity of PCA axis 1 as a key predictor of resource capture and utilization was tested by comparisons between this axis and values of more rigorously established predictors (‘hard’ traits) for the floras of Argentina and England. PCA axis 1 was correlated with variation in relative growth rate, leaf nitrogen content, and litter decomposition rate. It also coincided with palatability to model generalist herbivores. Therefore, location on PCA axis 1 can be linked to major ecosystem processes in those habitats where the plants are dominant. Conclusion: We confirm the existence at the global scale of a major axis of evolutionary specialization, previously recognised in several local floras. This axis reflects a fundamental trade‐off between rapid acquisition of resources and conservation of resources within well‐protected tissues. These major trends of specialization were maintained across different environmental situations (including differences in the proximate causes of low productivity, i.e. drought or mineral nutrient deficiency). The trends were also consistent across floras and major phylogenetic groups, and were linked with traits directly relevant to ecosystem processes.Fil: Díaz, Sandra Myrna. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto Multidisciplinario de Biología Vegetal. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas Físicas y Naturales. Instituto Multidisciplinario de Biología Vegetal; ArgentinaFil: Hodgson, J.G.. The University. Department of Animal and Plant Sciences. Unit of Comparative Plant Ecology; Reino UnidoFil: Thompson, K.. The University. Department of Animal and Plant Sciences. Unit of Comparative Plant Ecology; Reino UnidoFil: Cabido, Marcelo Ruben. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto Multidisciplinario de Biología Vegetal. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas Físicas y Naturales. Instituto Multidisciplinario de Biología Vegetal; ArgentinaFil: Cornelissen, Johannes H. C.. Free University. Faculty Earth and Life Sciences. Department of Systems Ecology; Países BajosFil: Funes, Guillermo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto Multidisciplinario de Biología Vegetal. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas Físicas y Naturales. Instituto Multidisciplinario de Biología Vegetal; ArgentinaFil: Pérez Harguindeguy, Natalia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto Multidisciplinario de Biología Vegetal. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas Físicas y Naturales. Instituto Multidisciplinario de Biología Vegetal; ArgentinaFil: Vendramini, Fernanda. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto Multidisciplinario de Biología Vegetal. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas Físicas y Naturales. Instituto Multidisciplinario de Biología Vegetal; ArgentinaFil: Falczuk, Valeria. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto Multidisciplinario de Biología Vegetal. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas Físicas y Naturales. Instituto Multidisciplinario de Biología Vegetal; ArgentinaFil: Zak, Marcelo Román. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto Multidisciplinario de Biología Vegetal. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas Físicas y Naturales. Instituto Multidisciplinario de Biología Vegetal; ArgentinaFil: Khoshnevi, M.. Research Institute of Forests and Rangelands; IránFil: Pérez Rontomé, M. C.. Instituto Pirenaico de Ecología; EspañaFil: Shirvani, F. A.. Research Institute of Forests and Rangelands; IránFil: Yazdani, S.. Research Institute of Forests and Rangelands; IránFil: Abbas Azimi, R. Research Institute of Forests and Rangelands; IránFil: Bogaard, A. The University. Department of Archaeology and Prehistory; Reino UnidoFil: Boustani, S.. Research Institute of Forests and Rangelands; IránFil: Charles, M.. The University. Department of Archaeology and Prehistory; Reino UnidoFil: Dehghan, M.. Research Institute of Forests and Rangelands; IránFil: de Torres Espuny, L.. Instituto Pirenaico de Ecología; EspañaFil: Guerrero Campo, J.. Instituto Pirenaico de Ecología; EspañaFil: Hynd, A.. The University. Department of Archaeology and Prehistory; Reino UnidoFil: Jones, G.. The University. Department of Archaeology and Prehistory; Reino UnidoFil: Kowsary, E.. Research Institute of Forests and Rangelands; Irán. Instituto Pirenaico de Ecología; EspañaFil: Kazemi Saeed, F.. Research Institute of Forests and Rangelands; IránFil: Maestro Martínez, M.. Instituto Pirenaico de Ecología; EspañaFil: Romo Diez, A.. Instituto Botanico de Barcelona; EspañaFil: Shaw, S.. Research Institute of Forests and Rangelands; Irán. The University. Department of Animal and Plant Sciences; Reino UnidoFil: Siavash, B.. Research Institute of Forests and Rangelands; IránFil: Villar Salvador, P.. Instituto Pirenaico de Ecología; Españ
    corecore