1,170 research outputs found
The effects of binaural spectral resolution mismatch on Mandarin speech perception in simulated electric hearing
This study assessed the effects of binaural spectral resolution mismatch on the intelligibility of Mandarin speech in noise using bilateral cochlear implant simulations. Noise-vocoded Mandarin speech, corrupted by speech-shaped noise at 0 and 5 dB signal-to-noise ratios, were presented unilaterally or bilaterally to normal-hearing listeners with mismatched spectral resolution between ears. Significant binaural benefits for Mandarin speech recognition were observed only with matched spectral resolution between ears. In addition, the performance of tone identification was more robust to noise than that of sentence recognition, suggesting factors other than tone identification might account more for the degraded sentence recognition in noise.published_or_final_versio
Generating GHZ state in 2m-qubit spin network
We consider a pure 2m-qubit initial state to evolve under a particular
quantum me- chanical spin Hamiltonian, which can be written in terms of the
adjacency matrix of the Johnson network J(2m;m). Then, by using some techniques
such as spectral dis- tribution and stratification associated with the graphs,
employed in [1, 2], a maximally entangled GHZ state is generated between the
antipodes of the network. In fact, an explicit formula is given for the
suitable coupling strengths of the hamiltonian, so that a maximally entangled
state can be generated between antipodes of the network. By using some known
multipartite entanglement measures, the amount of the entanglement of the final
evolved state is calculated, and finally two examples of four qubit and six
qubit states are considered in details.Comment: 22 page
Nucleon-Nucleon Correlations and Two-Nucleon Currents in Exclusive () Reactions
The contributions of short-range nucleon-nucleon (NN) correlations, various
meson exchange current (MEC) terms and the influence of isobar
excitations (isobaric currents, IC) on exclusive two-nucleon knockout reactions
induced by electron scattering are investigated. The nuclear structure
functions are evaluated for nuclear matter. Realistic NN interactions derived
in the framework of One-Boson-Exchange model are employed to evaluate the
effects of correlations and MEC in a consistent way. The correlations
correlations are determined by solving the Bethe-Goldstone equation. This
yields significant contributions to the structure functions W_L and W_T of the
(e,e'pn) and (e,e'pp) reactions. These contributions compete with MEC
corrections originating from the and exchange terms of the same
interaction. Special attention is paid to the so-called 'super parallel'
kinematics at momentum transfers which can be measured e.g. at MAMI in Mainz.Comment: 14 pages, 8 figures include
Overlap functions in correlation methods and quasifree nucleon knockout from O
The cross sections of the () and () reactions on O
are calculated, for the transitions to the ground state and the first
excited state of the residual nucleus, using single-particle overlap
functions obtained on the basis of one-body density matrices within different
correlation methods. The electron-induced one-nucleon knockout reaction is
treated within a nonrelativistic DWIA framework. The theoretical treatment of
the () reaction includes both contributions of the direct knockout
mechanism and of meson-exchange currents. The results are sensitive to details
of the different overlap functions. The consistent analysis of the reaction
cross sections and the comparison with the experimental data make it possible
to study the nucleon--nucleon correlation effects.Comment: 26 pages, LaTeX, 5 Postscript figures, submitted to PR
Meson exchange currents in electromagnetic one-nucleon emission
The role of meson exchange currents (MEC) in electron- and photon-induced
one-nucleon emission processes is studied in a nonrelativistic model including
correlations and final state interactions. The nuclear current is the sum of a
one-body and of a two-body part. The two-body current includes pion seagull,
pion-in-flight and the isobar current contributions. Numerical results are
presented for the exclusive 16O(e,e'p)15N and 16O(\gamma,p)15N reactions. MEC
effects are in general rather small in (e,e'p), while in (\gamma,p) they are
always large and important to obtain a consistent description of (e,e'p) and
(\gamma,p) data, with the same spectroscopic factors. The calculated (\gamma,p)
cross sections are sensitive to short-range correlations at high values of the
recoil momentum, where MEC effects are larger and overwhelm the contribution of
correlations.Comment: 9 pages, 6 figure
Correlation effects in single-particle overlap functions and one-nucleon removal reactions
Single-particle overlap functions and spectroscopic factors are calculated on
the basis of the one-body density matrices (ODM) obtained for the nucleus
employing different approaches to account for the effects of
correlations. The calculations use the relationship between the overlap
functions related to bound states of the (A-1)-particle system and the ODM for
the ground state of the A-particle system. The resulting bound-state overlap
functions are compared and tested in the description of the experimental data
from (p,d) reactions for which the shape of the overlap function is important.Comment: 11 pages, 4 figures include
Logarithmic two-point correlators in the Abelian sandpile model
We present the detailed calculations of the asymptotics of two-site
correlation functions for height variables in the two-dimensional Abelian
sandpile model. By using combinatorial methods for the enumeration of spanning
trees, we extend the well-known result for the correlation of minimal heights to for
height values . These results confirm the dominant logarithmic
behaviour for
large , predicted by logarithmic conformal field theory based on field
identifications obtained previously. We obtain, from our lattice calculations,
the explicit values for the coefficients and (the latter are new).Comment: 28 page
One Body Density Matrix, Natural Orbits and Quasi Hole States in 16O and 40Ca
The one body density matrix, momentum distribution, natural orbits and quasi
hole states of 16O and 40Ca are analyzed in the framework of the correlated
basis function theory using state dependent correlations with central and
tensor components. Fermi hypernetted chain integral equations and single
operator chain approximation are employed to sum cluster diagrams at all
orders. The optimal trial wave function is determined by means of the
variational principle and the realistic Argonne v8' two-nucleon and Urbana IX
three-nucleon interactions. The correlated momentum distributions are in good
agreement with the available variational Monte Carlo results and show the well
known enhancement at large momentum values with respect to the independent
particle model. Diagonalization of the density matrix provides the natural
orbits and their occupation numbers. Correlations deplete the occupation number
of the first natural orbitals by more than 10%. The first following ones result
instead occupied by a few percent. Jastrow correlations lower the spectroscopic
factors of the valence states by a few percent (~1-3%) and an additional ~8-12%
depletion is provided by tensor correlations. It is confirmed that short range
correlations do not explain the spectroscopic factors extracted from (e,e'p)
experiments. 2h-1p perturbative corrections in the correlated basis are
expected to provide most of the remaining strength, as in nuclear matter.Comment: 25 pages, 9 figures. Submitted to Phys.Rev.
The plant traits that drive ecosystems: Evidence from three continents.
Question: A set of easily‐measured (‘soft’) plant traits has been identified as potentially useful predictors of ecosystem functioning in previous studies. Here we aimed to discover whether the screening techniques remain operational in widely contrasted circumstances, to test for the existence of axes of variation in the particular sets of traits, and to test for their links with ‘harder’ traits of proven importance to ecosystem functioning.
Location: central‐western Argentina, central England, northern upland Iran, and north‐eastern Spain.
Recurrent patterns of ecological specialization: Through ordination of a matrix of 640 vascular plant taxa by 12 standardized traits, we detected similar patterns of specialization in the four floras. The first PCA axis was identified as an axis of resource capture, usage and release. PCA axis 2 appeared to be a size‐related axis. Individual PCA for each country showed that the same traits remained valuable as predictors of resource capture and utilization in all of them, despite their major differences in climate, biogeography and land‐use. The results were not significantly driven by particular taxa: the main traits determining PCA axis 1 were very similar in eudicotyledons and monocotyledons and Asteraceae, Fabaceae and Poaceae.
Links between recurrent suites of ‘soft’ traits and ‘hard’ traits: The validity of PCA axis 1 as a key predictor of resource capture and utilization was tested by comparisons between this axis and values of more rigorously established predictors (‘hard’ traits) for the floras of Argentina and England. PCA axis 1 was correlated with variation in relative growth rate, leaf nitrogen content, and litter decomposition rate. It also coincided with palatability to model generalist herbivores. Therefore, location on PCA axis 1 can be linked to major ecosystem processes in those habitats where the plants are dominant.
Conclusion: We confirm the existence at the global scale of a major axis of evolutionary specialization, previously recognised in several local floras. This axis reflects a fundamental trade‐off between rapid acquisition of resources and conservation of resources within well‐protected tissues. These major trends of specialization were maintained across different environmental situations (including differences in the proximate causes of low productivity, i.e. drought or mineral nutrient deficiency). The trends were also consistent across floras and major phylogenetic groups, and were linked with traits directly relevant to ecosystem processes.Fil: Díaz, Sandra Myrna. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto Multidisciplinario de Biología Vegetal. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas Físicas y Naturales. Instituto Multidisciplinario de Biología Vegetal; ArgentinaFil: Hodgson, J.G.. The University. Department of Animal and Plant Sciences. Unit of Comparative Plant Ecology; Reino UnidoFil: Thompson, K.. The University. Department of Animal and Plant Sciences. Unit of Comparative Plant Ecology; Reino UnidoFil: Cabido, Marcelo Ruben. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto Multidisciplinario de Biología Vegetal. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas Físicas y Naturales. Instituto Multidisciplinario de Biología Vegetal; ArgentinaFil: Cornelissen, Johannes H. C.. Free University. Faculty Earth and Life Sciences. Department of Systems Ecology; Países BajosFil: Funes, Guillermo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto Multidisciplinario de Biología Vegetal. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas Físicas y Naturales. Instituto Multidisciplinario de Biología Vegetal; ArgentinaFil: Pérez Harguindeguy, Natalia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto Multidisciplinario de Biología Vegetal. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas Físicas y Naturales. Instituto Multidisciplinario de Biología Vegetal; ArgentinaFil: Vendramini, Fernanda. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto Multidisciplinario de Biología Vegetal. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas Físicas y Naturales. Instituto Multidisciplinario de Biología Vegetal; ArgentinaFil: Falczuk, Valeria. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto Multidisciplinario de Biología Vegetal. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas Físicas y Naturales. Instituto Multidisciplinario de Biología Vegetal; ArgentinaFil: Zak, Marcelo Román. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto Multidisciplinario de Biología Vegetal. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas Físicas y Naturales. Instituto Multidisciplinario de Biología Vegetal; ArgentinaFil: Khoshnevi, M.. Research Institute of Forests and Rangelands; IránFil: Pérez Rontomé, M. C.. Instituto Pirenaico de Ecología; EspañaFil: Shirvani, F. A.. Research Institute of Forests and Rangelands; IránFil: Yazdani, S.. Research Institute of Forests and Rangelands; IránFil: Abbas Azimi, R. Research Institute of Forests and Rangelands; IránFil: Bogaard, A. The University. Department of Archaeology and Prehistory; Reino UnidoFil: Boustani, S.. Research Institute of Forests and Rangelands; IránFil: Charles, M.. The University. Department of Archaeology and Prehistory; Reino UnidoFil: Dehghan, M.. Research Institute of Forests and Rangelands; IránFil: de Torres Espuny, L.. Instituto Pirenaico de Ecología; EspañaFil: Guerrero Campo, J.. Instituto Pirenaico de Ecología; EspañaFil: Hynd, A.. The University. Department of Archaeology and Prehistory; Reino UnidoFil: Jones, G.. The University. Department of Archaeology and Prehistory; Reino UnidoFil: Kowsary, E.. Research Institute of Forests and Rangelands; Irán. Instituto Pirenaico de Ecología; EspañaFil: Kazemi Saeed, F.. Research Institute of Forests and Rangelands; IránFil: Maestro Martínez, M.. Instituto Pirenaico de Ecología; EspañaFil: Romo Diez, A.. Instituto Botanico de Barcelona; EspañaFil: Shaw, S.. Research Institute of Forests and Rangelands; Irán. The University. Department of Animal and Plant Sciences; Reino UnidoFil: Siavash, B.. Research Institute of Forests and Rangelands; IránFil: Villar Salvador, P.. Instituto Pirenaico de Ecología; Españ
- …
