131 research outputs found
Distinct Mechanisms for Induction and Tolerance Regulate the Immediate Early Genes Encoding Interleukin 1Ξ² and Tumor Necrosis Factor Ξ±
Interleukin-1Ξ² and Tumor Necrosis Factor Ξ± play related, but distinct, roles in immunity and disease. Our study revealed major mechanistic distinctions in the Toll-like receptor (TLR) signaling-dependent induction for the rapidly expressed genes (IL1B and TNF) coding for these two cytokines. Prior to induction, TNF exhibited pre-bound TATA Binding Protein (TBP) and paused RNA Polymerase II (Pol II), hallmarks of poised immediate-early (IE) genes. In contrast, unstimulated IL1B displayed very low levels of both TBP and paused Pol II, requiring the lineage-specific Spi-1/PU.1 (Spi1) transcription factor as an anchor for induction-dependent interaction with two TLR-activated transcription factors, C/EBPΞ² and NF-ΞΊB. Activation and DNA binding of these two pre-expressed factors resulted in de novo recruitment of TBP and Pol II to IL1B in concert with a permissive state for elongation mediated by the recruitment of elongation factor P-TEFb. This Spi1-dependent mechanism for IL1B transcription, which is unique for a rapidly-induced/poised IE gene, was more dependent upon P-TEFb than was the case for the TNF gene. Furthermore, the dependence on phosphoinositide 3-kinase for P-TEFb recruitment to IL1B paralleled a greater sensitivity to the metabolic state of the cell and a lower sensitivity to the phenomenon of endotoxin tolerance than was evident for TNF. Such differences in induction mechanisms argue against the prevailing paradigm that all IE genes possess paused Pol II and may further delineate the specific roles played by each of these rapidly expressed immune modulators. Β© 2013 Adamik et al
Peritonitis in children on peritoneal dialysis in Cape Town, South Africa: epidemiology and risks
Peritonitis is a frequent complication of peritoneal dialysis (PD) in children as well in adults. Data on PD and peritonitis in pediatric patients are very scarce in developing countries. A retrospective cohort study was performed between 2000 and 2008 with the aim to evaluate PD treatment and peritonitis epidemiology in pediatric patients in South Africa and identify risk factors for peritonitis. Baseline characteristics and potential risk factors of peritonitis were recorded, including housing, socio-economic circumstances, distance to PD center, type of PD, mode of catheter placement, race, presence of gastrostomy tube, weight, and height. Outcome indices for peritonitis were peritonitis rate, time to first peritonitis, and number of peritonitis-free patients. The patient cohort comprised 67 patients who were on PD for a total of 544Β months. The total number of peritonitis episodes was 129. Median peritonitis rate was one episode every 4.3 patient months (2.8 episodes/patient-year, range 0β21.2). Median time to first infection was 2.03Β months (range 0.1β21.5Β months), and 28.4% of patients remained free from peritonitis. Patients with good housing and good socio-economic circumstances had a significantly lower peritonitis rate and a longer time to first peritonitis episode. Peritonitis rate was high in this cohort, compared to numbers reported for the developed world; the characteristics of causative organisms are comparable. The most important risk factors for the development of peritonitis were poor housing and poor socio-economic circumstances. More intensive counseling may be beneficial, but improvement of general socio-economic circumstances will have the greatest influence on PD success
Gadolinium and nephrogenic systemic fibrosis: time to tighten practice
Nephrogenic systemic fibrosis (NSF) is a relatively new entity, first described in 1997. Few cases have been reported, but the disease has high morbidity and mortality. To date it has been seen exclusively in patients with renal dysfunction. There is an emerging link with intravenous injection of gadolinium contrast agents, which has been suggested as a main triggering factor, with a lag time of days to weeks. Risk factors include the severity of renal impairment, major surgery, vascular events and other proinflammatory conditions. There is no reason to believe that children have an altered risk compared to the adult population. It is important that the paediatric radiologist acknowledges emerging information on NSF but at the same time considers the risk:benefit ratio prior to embarking on alternative investigations, as children with chronic kidney disease require high-quality diagnostic imaging
The Urokinase Receptor (uPAR) Facilitates Clearance of Borrelia burgdorferi
The causative agent of Lyme borreliosis, the spirochete Borrelia
burgdorferi, has been shown to induce expression of the urokinase
receptor (uPAR); however, the role of uPAR in the immune response against
Borrelia has never been investigated. uPAR not only acts as
a proteinase receptor, but can also, dependently or independently of ligation to
uPA, directly affect leukocyte function. We here demonstrate that uPAR is
upregulated on murine and human leukocytes upon exposure to B.
burgdorferi both in vitro as well as in vivo. Notably, B.
burgdorferi-inoculated C57BL/6 uPAR knock-out mice harbored
significantly higher Borrelia numbers compared to WT controls.
This was associated with impaired phagocytotic capacity of B.
burgdorferi by uPAR knock-out leukocytes in vitro. B.
burgdorferi numbers in vivo, and phagocytotic capacity in vitro,
were unaltered in uPA, tPA (low fibrinolytic activity) and PAI-1 (high
fibrinolytic activity) knock-out mice compared to WT controls. Strikingly, in
uPAR knock-out mice partially backcrossed to a B. burgdorferi
susceptible C3H/HeN background, higher B. burgdorferi numbers
were associated with more severe carditis and increased local TLR2 and
IL-1Ξ² mRNA expression. In conclusion, in B. burgdorferi
infection, uPAR is required for phagocytosis and adequate eradication of the
spirochete from the heart by a mechanism that is independent of binding of uPAR
to uPA or its role in the fibrinolytic system
Dialysis-associated peritonitis in children
Peritonitis remains a frequent complication of peritoneal dialysis in children and is the most common reason for technique failure. The microbiology is characterized by a predominance of Gram-positive organisms, with fungi responsible for less than 5% of episodes. Data collected by the International Pediatric Peritonitis Registry have revealed a worldwide variation in the bacterial etiology of peritonitis, as well as in the rate of culture-negative peritonitis. Risk factors for infection include young age, the absence of prophylactic antibiotics at catheter placement, spiking of dialysis bags, and the presence of a catheter exit-site or tunnel infection. Clinical symptoms at presentation are somewhat organism specific and can be objectively assessed with a Disease Severity Score. Whereas recommendations for empiric antibiotic therapy in children have been published by the International Society of Peritoneal Dialysis, epidemiologic data and antibiotic susceptibility data suggest that it may be desirable to take the patient- and center-specific history of microorganisms and their sensitivity patterns into account when prescribing initial therapy. The vast majority of patients are treated successfully and continue peritoneal dialysis, with the poorest outcome noted in patients with peritonitis secondary to Gram-negative organisms or fungi and in those with a relapsing infection
Exacerbated Innate Host Response to SARS-CoV in Aged Non-Human Primates
The emergence of viral respiratory pathogens with pandemic potential, such as severe acute respiratory syndrome coronavirus (SARS-CoV) and influenza A H5N1, urges the need for deciphering their pathogenesis to develop new intervention strategies. SARS-CoV infection causes acute lung injury (ALI) that may develop into life-threatening acute respiratory distress syndrome (ARDS) with advanced age correlating positively with adverse disease outcome. The molecular pathways, however, that cause virus-induced ALI/ARDS in aged individuals are ill-defined. Here, we show that SARS-CoV-infected aged macaques develop more severe pathology than young adult animals, even though viral replication levels are similar. Comprehensive genomic analyses indicate that aged macaques have a stronger host response to virus infection than young adult macaques, with an increase in differential expression of genes associated with inflammation, with NF-ΞΊB as central player, whereas expression of type I interferon (IFN)-Ξ² is reduced. Therapeutic treatment of SARS-CoV-infected aged macaques with type I IFN reduces pathology and diminishes pro-inflammatory gene expression, including interleukin-8 (IL-8) levels, without affecting virus replication in the lungs. Thus, ALI in SARS-CoV-infected aged macaques developed as a result of an exacerbated innate host response. The anti-inflammatory action of type I IFN reveals a potential intervention strategy for virus-induced ALI
Dialysis and pediatric acute kidney injury: choice of renal support modality
Dialytic intervention for infants and children with acute kidney injury (AKI) can take many forms. Whether patients are treated by intermittent hemodialysis, peritoneal dialysis or continuous renal replacement therapy depends on specific patient characteristics. Modality choice is also determined by a variety of factors, including provider preference, available institutional resources, dialytic goals and the specific advantages or disadvantages of each modality. Our approach to AKI has benefited from the derivation and generally accepted defining criteria put forth by the Acute Dialysis Quality Initiative (ADQI) group. These are known as the risk, injury, failure, loss, and end-stage renal disease (RIFLE) criteria. A modified pediatrics RIFLE (pRIFLE) criteria has recently been validated. Common defining criteria will allow comparative investigation into therapeutic benefits of different dialytic interventions. While this is an extremely important development in our approach to AKI, several fundamental questions remain. Of these, arguably, the most important are βWhen and what type of dialytic modality should be used in the treatment of pediatric AKI?β This review will provide an overview of the limited data with the aim of providing objective guidelines regarding modality choice for pediatric AKI. Comparisons in terms of cost, availability, safety and target group will be reviewed
Succinate is an inflammatory signal that induces IL-1 beta through HIF-1 alpha
Macrophages activated by the Gram-negative bacterial product lipopolysaccharide switch their core metabolism from oxidative phosphorylation to glycolysis1. Here we show that inhibition of glycolysis with 2-deoxyglucose suppresses lipopolysaccharide-induced interleukin-1Ξ² but not tumour-necrosis factor-Ξ± in mouse macrophages. A comprehensive metabolic map of lipopolysaccharide-activated macrophages shows upregulation of glycolytic and downregulation of mitochondrial genes, which correlates directly with the expression profiles of altered metabolites. Lipopolysaccharide strongly increases the levels of the tricarboxylic-acid cycle intermediate succinate. Glutamine-dependent anerplerosis is the principal source of succinate, although the βGABA (Ξ³-aminobutyric acid) shuntβ pathway also has a role. Lipopolysaccharide-induced succinate stabilizes hypoxia-inducible factor-1Ξ±, an effect that is inhibited by 2-deoxyglucose, with interleukin-1Ξ² as an important target. Lipopolysaccharide also increases succinylation of several proteins. We therefore identify succinate as a metabolite in innate immune signalling, which enhances interleukin-1Ξ² production during inflammation
- β¦