341 research outputs found

    The Random Bit Complexity of Mobile Robots Scattering

    Full text link
    We consider the problem of scattering nn robots in a two dimensional continuous space. As this problem is impossible to solve in a deterministic manner, all solutions must be probabilistic. We investigate the amount of randomness (that is, the number of random bits used by the robots) that is required to achieve scattering. We first prove that nlognn \log n random bits are necessary to scatter nn robots in any setting. Also, we give a sufficient condition for a scattering algorithm to be random bit optimal. As it turns out that previous solutions for scattering satisfy our condition, they are hence proved random bit optimal for the scattering problem. Then, we investigate the time complexity of scattering when strong multiplicity detection is not available. We prove that such algorithms cannot converge in constant time in the general case and in o(loglogn)o(\log \log n) rounds for random bits optimal scattering algorithms. However, we present a family of scattering algorithms that converge as fast as needed without using multiplicity detection. Also, we put forward a specific protocol of this family that is random bit optimal (nlognn \log n random bits are used) and time optimal (loglogn\log \log n rounds are used). This improves the time complexity of previous results in the same setting by a logn\log n factor. Aside from characterizing the random bit complexity of mobile robot scattering, our study also closes its time complexity gap with and without strong multiplicity detection (that is, O(1)O(1) time complexity is only achievable when strong multiplicity detection is available, and it is possible to approach it as needed otherwise)

    Molekyylinmallinnusohjelma

    Get PDF
    Työn tavoitteena on suunnitella ja toteuttaa käyttökelpoinen molekyylinmallinnus-ohjelma, jota voisi mahdollisesti hyödyntää koulujen kemianopetuksessa tavanomaisen oppimisen ohella. Projektin idea lähti tekijän omasta mielenkiinnosta aiheeseen, ja käyttötarpeen selvittäminen sekä mahdollinen käyttöönotto on tarkoitus aloittaa vasta työn päättymisen jälkeen. Työn etenemiseen riitti teorian kannalta lukiossa opitut kemian sekä pitkän matematiikan taidot, joita jouduttiin kuitenkin kertaamaan internetlähteitä hyödyntäen. Ohjelma toteutettiin Unity-pelimoottorilla, joka on suunniteltu erilaisten ohjelmien helppoon tuottamiseen ja jonka käyttöönottokynnys on suhteellisen matala. Työn ohjelmointipuolen hankaluudesta johtuen sen jää kesken, joten jatkokehitystä on tehtävä, ennen kuin ohjelman käyttöä voidaan harkita opetuksessa.The aim of the thesis was to design and implement a 3D molecule modelling application that could be used in schools to help visualize molecules alongside with the traditional teaching methods. It remains to be seen whether the program will actually see any use, as the marketing side of the project was intentionally left out of the thesis work and will be conducted on a later date. For this thesis it was enough to know the basics of molecular chemistry and maths learned in high school, even though some rehearsing was necessary. The software was made using the Unity-engine, which is designed for easy developing of software. Its deployment has also been made simple, which helped in choosing it for this work. Due to the difficulties encountered during the development process the application was not made to the point originally planned. Further development is however planned for it and is needed before it can be considered to be used for teaching in schools

    Bregman Voronoi Diagrams: Properties, Algorithms and Applications

    Get PDF
    The Voronoi diagram of a finite set of objects is a fundamental geometric structure that subdivides the embedding space into regions, each region consisting of the points that are closer to a given object than to the others. We may define many variants of Voronoi diagrams depending on the class of objects, the distance functions and the embedding space. In this paper, we investigate a framework for defining and building Voronoi diagrams for a broad class of distance functions called Bregman divergences. Bregman divergences include not only the traditional (squared) Euclidean distance but also various divergence measures based on entropic functions. Accordingly, Bregman Voronoi diagrams allow to define information-theoretic Voronoi diagrams in statistical parametric spaces based on the relative entropy of distributions. We define several types of Bregman diagrams, establish correspondences between those diagrams (using the Legendre transformation), and show how to compute them efficiently. We also introduce extensions of these diagrams, e.g. k-order and k-bag Bregman Voronoi diagrams, and introduce Bregman triangulations of a set of points and their connexion with Bregman Voronoi diagrams. We show that these triangulations capture many of the properties of the celebrated Delaunay triangulation. Finally, we give some applications of Bregman Voronoi diagrams which are of interest in the context of computational geometry and machine learning.Comment: Extend the proceedings abstract of SODA 2007 (46 pages, 15 figures

    Zone Diagrams in Euclidean Spaces and in Other Normed Spaces

    Full text link
    Zone diagram is a variation on the classical concept of a Voronoi diagram. Given n sites in a metric space that compete for territory, the zone diagram is an equilibrium state in the competition. Formally it is defined as a fixed point of a certain "dominance" map. Asano, Matousek, and Tokuyama proved the existence and uniqueness of a zone diagram for point sites in Euclidean plane, and Reem and Reich showed existence for two arbitrary sites in an arbitrary metric space. We establish existence and uniqueness for n disjoint compact sites in a Euclidean space of arbitrary (finite) dimension, and more generally, in a finite-dimensional normed space with a smooth and rotund norm. The proof is considerably simpler than that of Asano et al. We also provide an example of non-uniqueness for a norm that is rotund but not smooth. Finally, we prove existence and uniqueness for two point sites in the plane with a smooth (but not necessarily rotund) norm.Comment: Title page + 16 pages, 20 figure

    Fitting Voronoi Diagrams to Planar Tesselations

    Get PDF
    Given a tesselation of the plane, defined by a planar straight-line graph GG, we want to find a minimal set SS of points in the plane, such that the Voronoi diagram associated with SS "fits" \ GG. This is the Generalized Inverse Voronoi Problem (GIVP), defined in \cite{Trin07} and rediscovered recently in \cite{Baner12}. Here we give an algorithm that solves this problem with a number of points that is linear in the size of GG, assuming that the smallest angle in GG is constant.Comment: 14 pages, 8 figures, 1 table. Presented at IWOCA 2013 (Int. Workshop on Combinatorial Algorithms), Rouen, France, July 201

    Geospatial partitioning of open transit data

    Get PDF

    Maximizing Maximal Angles for Plane Straight-Line Graphs

    Get PDF
    Let G=(S,E)G=(S, E) be a plane straight-line graph on a finite point set SR2S\subset\R^2 in general position. The incident angles of a vertex pSp \in S of GG are the angles between any two edges of GG that appear consecutively in the circular order of the edges incident to pp. A plane straight-line graph is called ϕ\phi-open if each vertex has an incident angle of size at least ϕ\phi. In this paper we study the following type of question: What is the maximum angle ϕ\phi such that for any finite set SR2S\subset\R^2 of points in general position we can find a graph from a certain class of graphs on SS that is ϕ\phi-open? In particular, we consider the classes of triangulations, spanning trees, and paths on SS and give tight bounds in most cases.Comment: 15 pages, 14 figures. Apart of minor corrections, some proofs that were omitted in the previous version are now include

    Real space first-principles derived semiempirical pseudopotentials applied to tunneling magnetoresistance

    Full text link
    In this letter we present a real space density functional theory (DFT) localized basis set semi-empirical pseudopotential (SEP) approach. The method is applied to iron and magnesium oxide, where bulk SEP and local spin density approximation (LSDA) band structure calculations are shown to agree within approximately 0.1 eV. Subsequently we investigate the qualitative transferability of bulk derived SEPs to Fe/MgO/Fe tunnel junctions. We find that the SEP method is particularly well suited to address the tight binding transferability problem because the transferability error at the interface can be characterized not only in orbital space (via the interface local density of states) but also in real space (via the system potential). To achieve a quantitative parameterization, we introduce the notion of ghost semi-empirical pseudopotentials extracted from the first-principles calculated Fe/MgO bonding interface. Such interface corrections are shown to be particularly necessary for barrier widths in the range of 1 nm, where interface states on opposite sides of the barrier couple effectively and play a important role in the transmission characteristics. In general the results underscore the need for separate tight binding interface and bulk parameter sets when modeling conduction through thin heterojunctions on the nanoscale.Comment: Submitted to Journal of Applied Physic

    Rigid ball-polyhedra in Euclidean 3-space

    Full text link
    A ball-polyhedron is the intersection with non-empty interior of finitely many (closed) unit balls in Euclidean 3-space. One can represent the boundary of a ball-polyhedron as the union of vertices, edges, and faces defined in a rather natural way. A ball-polyhedron is called a simple ball-polyhedron if at every vertex exactly three edges meet. Moreover, a ball-polyhedron is called a standard ball-polyhedron if its vertex-edge-face structure is a lattice (with respect to containment). To each edge of a ball-polyhedron one can assign an inner dihedral angle and say that the given ball-polyhedron is locally rigid with respect to its inner dihedral angles if the vertex-edge-face structure of the ball-polyhedron and its inner dihedral angles determine the ball-polyhedron up to congruence locally. The main result of this paper is a Cauchy-type rigidity theorem for ball-polyhedra stating that any simple and standard ball-polyhedron is locally rigid with respect to its inner dihedral angles.Comment: 11 pages, 2 figure
    corecore