1,163 research outputs found

    A modified Next Reaction Method for simulating chemical systems with time dependent propensities and delays

    Full text link
    Chemical reaction systems with a low to moderate number of molecules are typically modeled as discrete jump Markov processes. These systems are oftentimes simulated with methods that produce statistically exact sample paths such as the Gillespie Algorithm or the Next Reaction Method. In this paper we make explicit use of the fact that the initiation times of the reactions can be represented as the firing times of independent, unit rate Poisson processes with internal times given by integrated propensity functions. Using this representation we derive a modified Next Reaction Method and, in a way that achieves efficiency over existing approaches for exact simulation, extend it to systems with time dependent propensities as well as to systems with delays.Comment: 25 pages, 1 figure. Some minor changes made to add clarit

    Incorporating postleap checks in tau-leaping

    Full text link
    By explicitly representing the reaction times of discrete chemical systems as the firing times of independent, unit rate Poisson processes, we develop a new adaptive tau-leaping procedure. The procedure developed is novel in that accuracy is guaranteed by performing postleap checks. Because the representation we use separates the randomness of the model from the state of the system, we are able to perform the postleap checks in such a way that the statistics of the sample paths generated will not be biased by the rejections of leaps. Further, since any leap condition is ensured with a probability of one, the simulation method naturally avoids negative population valuesComment: Final version. Minor change

    Structure of the Energy Landscape of Short Peptides

    Full text link
    We have simulated, as a showcase, the pentapeptide Met-enkephalin (Tyr-Gly-Gly-Phe-Met) to visualize the energy landscape and investigate the conformational coverage by the multicanonical method. We have obtained a three-dimensional topographic picture of the whole energy landscape by plotting the histogram with respect to energy(temperature) and the order parameter, which gives the degree of resemblance of any created conformation with the global energy minimum (GEM).Comment: 17 pages, 4 figure

    Maximizing Maximal Angles for Plane Straight-Line Graphs

    Get PDF
    Let G=(S,E)G=(S, E) be a plane straight-line graph on a finite point set SR2S\subset\R^2 in general position. The incident angles of a vertex pSp \in S of GG are the angles between any two edges of GG that appear consecutively in the circular order of the edges incident to pp. A plane straight-line graph is called ϕ\phi-open if each vertex has an incident angle of size at least ϕ\phi. In this paper we study the following type of question: What is the maximum angle ϕ\phi such that for any finite set SR2S\subset\R^2 of points in general position we can find a graph from a certain class of graphs on SS that is ϕ\phi-open? In particular, we consider the classes of triangulations, spanning trees, and paths on SS and give tight bounds in most cases.Comment: 15 pages, 14 figures. Apart of minor corrections, some proofs that were omitted in the previous version are now include

    Approximating the minimum directed tree cover

    Full text link
    Given a directed graph GG with non negative cost on the arcs, a directed tree cover of GG is a rooted directed tree such that either head or tail (or both of them) of every arc in GG is touched by TT. The minimum directed tree cover problem (DTCP) is to find a directed tree cover of minimum cost. The problem is known to be NPNP-hard. In this paper, we show that the weighted Set Cover Problem (SCP) is a special case of DTCP. Hence, one can expect at best to approximate DTCP with the same ratio as for SCP. We show that this expectation can be satisfied in some way by designing a purely combinatorial approximation algorithm for the DTCP and proving that the approximation ratio of the algorithm is max{2,ln(D+)}\max\{2, \ln(D^+)\} with D+D^+ is the maximum outgoing degree of the nodes in GG.Comment: 13 page

    Algorithms for Stable Matching and Clustering in a Grid

    Full text link
    We study a discrete version of a geometric stable marriage problem originally proposed in a continuous setting by Hoffman, Holroyd, and Peres, in which points in the plane are stably matched to cluster centers, as prioritized by their distances, so that each cluster center is apportioned a set of points of equal area. We show that, for a discretization of the problem to an n×nn\times n grid of pixels with kk centers, the problem can be solved in time O(n2log5n)O(n^2 \log^5 n), and we experiment with two slower but more practical algorithms and a hybrid method that switches from one of these algorithms to the other to gain greater efficiency than either algorithm alone. We also show how to combine geometric stable matchings with a kk-means clustering algorithm, so as to provide a geometric political-districting algorithm that views distance in economic terms, and we experiment with weighted versions of stable kk-means in order to improve the connectivity of the resulting clusters.Comment: 23 pages, 12 figures. To appear (without the appendices) at the 18th International Workshop on Combinatorial Image Analysis, June 19-21, 2017, Plovdiv, Bulgari

    Furrow Diking Technology for Agricultural Water Conservation and its Impact on Crop Yields in Texas

    Get PDF
    Furrow diking is a practical, efficient and low-cost technique to conserve water and increase crop yields. Improvements in diker design and the increased use of herbicides have resulted in the rapid spread of furrow diking in the Texas High Plains and other regions. To quantify the long-term effects of diking on crop yields, a computer simulation approach was used. Three crop models for sorghum, corn and cotton were combined with surface runoff hydrology algorithms, based on the USDA-SCS curve number methodology. The combination models called SORDIKE, CORDIKE and COTDIKE were run to determine the effects of conserving the runoff (by diking) on crop yields. Three scenarios of not diking, diking in the growing season, and diking all year were simulated. Daily weather data for 25 years from five Texas regions were used for the analyses. Depending on the location, furrow diking in the growing season increased average annual sorghum yields by 320 to 570 kg/ha, corn yields by 180 to 570 kg/ha, and cotton lint yields by 10 to 20 kg/ha. Diking the land throughout the year increased mean annual yields by 440 to 1080 kg/ha of sorghum, 210 to 800 kg/ha of corn and 10 to 30 kg/ha of cotton lint. The study indicated that furrow diking can be a valuable management practice for about 3.4 million ha of cropped area in the semi-arid and sub-humid regions of Texas. The practice may be useful in other areas also, to mitigate the effects of short duration moisture stress on crop yields

    Colored extrinsic fluctuations and stochastic gene expression

    Get PDF
    Stochasticity is both exploited and controlled by cells. Although the intrinsic stochasticity inherent in biochemistry is relatively well understood, cellular variation, or ‘noise', is predominantly generated by interactions of the system of interest with other stochastic systems in the cell or its environment. Such extrinsic fluctuations are nonspecific, affecting many system components, and have a substantial lifetime, comparable to the cell cycle (they are ‘colored'). Here, we extend the standard stochastic simulation algorithm to include extrinsic fluctuations. We show that these fluctuations affect mean protein numbers and intrinsic noise, can speed up typical network response times, and can explain trends in high-throughput measurements of variation. If extrinsic fluctuations in two components of the network are correlated, they may combine constructively (amplifying each other) or destructively (attenuating each other). Consequently, we predict that incoherent feedforward loops attenuate stochasticity, while coherent feedforwards amplify it. Our results demonstrate that both the timescales of extrinsic fluctuations and their nonspecificity substantially affect the function and performance of biochemical networks

    Optimizing information flow in small genetic networks. I

    Full text link
    In order to survive, reproduce and (in multicellular organisms) differentiate, cells must control the concentrations of the myriad different proteins that are encoded in the genome. The precision of this control is limited by the inevitable randomness of individual molecular events. Here we explore how cells can maximize their control power in the presence of these physical limits; formally, we solve the theoretical problem of maximizing the information transferred from inputs to outputs when the number of available molecules is held fixed. We start with the simplest version of the problem, in which a single transcription factor protein controls the readout of one or more genes by binding to DNA. We further simplify by assuming that this regulatory network operates in steady state, that the noise is small relative to the available dynamic range, and that the target genes do not interact. Even in this simple limit, we find a surprisingly rich set of optimal solutions. Importantly, for each locally optimal regulatory network, all parameters are determined once the physical constraints on the number of available molecules are specified. Although we are solving an over--simplified version of the problem facing real cells, we see parallels between the structure of these optimal solutions and the behavior of actual genetic regulatory networks. Subsequent papers will discuss more complete versions of the problem
    corecore