60 research outputs found

    A new view of electrochemistry at highly oriented pyrolytic graphite

    Get PDF
    Major new insights on electrochemical processes at graphite electrodes are reported, following extensive investigations of two of the most studied redox couples, Fe(CN)64–/3– and Ru(NH3)63+/2+. Experiments have been carried out on five different grades of highly oriented pyrolytic graphite (HOPG) that vary in step-edge height and surface coverage. Significantly, the same electrochemical characteristic is observed on all surfaces, independent of surface quality: initial cyclic voltammetry (CV) is close to reversible on freshly cleaved surfaces (>400 measurements for Fe(CN)64–/3– and >100 for Ru(NH3)63+/2+), in marked contrast to previous studies that have found very slow electron transfer (ET) kinetics, with an interpretation that ET only occurs at step edges. Significantly, high spatial resolution electrochemical imaging with scanning electrochemical cell microscopy, on the highest quality mechanically cleaved HOPG, demonstrates definitively that the pristine basal surface supports fast ET, and that ET is not confined to step edges. However, the history of the HOPG surface strongly influences the electrochemical behavior. Thus, Fe(CN)64–/3– shows markedly diminished ET kinetics with either extended exposure of the HOPG surface to the ambient environment or repeated CV measurements. In situ atomic force microscopy (AFM) reveals that the deterioration in apparent ET kinetics is coupled with the deposition of material on the HOPG electrode, while conducting-AFM highlights that, after cleaving, the local surface conductivity of HOPG deteriorates significantly with time. These observations and new insights are not only important for graphite, but have significant implications for electrochemistry at related carbon materials such as graphene and carbon nanotubes

    MetaboHunter: an automatic approach for identification of metabolites from 1H-NMR spectra of complex mixtures

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>One-dimensional <sup>1</sup>H-NMR spectroscopy is widely used for high-throughput characterization of metabolites in complex biological mixtures. However, the accurate identification of individual compounds is still a challenging task, particularly in spectral regions with higher peak densities. The need for automatic tools to facilitate and further improve the accuracy of such tasks, while using increasingly larger reference spectral libraries becomes a priority of current metabolomics research.</p> <p>Results</p> <p>We introduce a web server application, called MetaboHunter, which can be used for automatic assignment of <sup>1</sup>H-NMR spectra of metabolites. MetaboHunter provides methods for automatic metabolite identification based on spectra or peak lists with three different search methods and with possibility for peak drift in a user defined spectral range. The assignment is performed using as reference libraries manually curated data from two major publicly available databases of NMR metabolite standard measurements (HMDB and MMCD). Tests using a variety of synthetic and experimental spectra of single and multi metabolite mixtures show that MetaboHunter is able to identify, in average, more than 80% of detectable metabolites from spectra of synthetic mixtures and more than 50% from spectra corresponding to experimental mixtures. This work also suggests that better scoring functions improve by more than 30% the performance of MetaboHunter's metabolite identification methods.</p> <p>Conclusions</p> <p>MetaboHunter is a freely accessible, easy to use and user friendly <sup>1</sup>H-NMR-based web server application that provides efficient data input and pre-processing, flexible parameter settings, fast and automatic metabolite fingerprinting and results visualization via intuitive plotting and compound peak hit maps. Compared to other published and freely accessible metabolomics tools, MetaboHunter implements three efficient methods to search for metabolites in manually curated data from two reference libraries.</p> <p>Availability</p> <p><url>http://www.nrcbioinformatics.ca/metabohunter/</url></p

    Maximal phi-Inequalities for Nonnegative Submartingales

    No full text
    • 

    corecore