48 research outputs found
Angular momenta, helicity, and other properties of dielectric-fiber and metallic-wire modes
Spin and orbital angular momenta (AM) of light are well studied for
free-space electromagnetic fields, even nonparaxial. One of the important
applications of these concepts is the information transfer using AM modes,
often via optical fibers and other guiding systems. However, the
self-consistent description of the spin and orbital AM of light in optical
media (including dispersive and metallic cases) was provided only recently
[K.Y. Bliokh et al., Phys. Rev. Lett. 119, 073901 (2017)]. Here we present the
first accurate calculations, both analytical and numerical, of the spin and
orbital AM, as well as the helicity and other properties, for the full-vector
eigenmodes of cylindrical dielectric and metallic (nanowire) waveguides. We
find remarkable fundamental relations, such as the quantization of the
canonical total AM of cylindrical guided modes in the general nonparaxial case.
This quantization, as well as the noninteger values of the spin and orbital AM,
are determined by the generalized geometric and dynamical phases in the mode
fields. Moreover, we show that the spin AM of metallic-wire modes is
determined, in the geometrical-optics approximation, by the transverse spin of
surface plasmon-polaritons propagating along helical trajectories on the wire
surface. Our work provides a solid platform for future studies and applications
of the AM and helicity properties of guided optical and plasmonic waves.Comment: 12 pages, 4 figures, to appear in Optic
Spatial bunching of same-charge polarization singularities in two-dimensional random vector waves
Topological singularities are ubiquitous in many areas of physics.
Polarization singularities are locations at which an aspect of the polarization
ellipse of light becomes undetermined or degenerate. At C points the
orientation of the ellipse becomes degenerate and light's electric field vector
describes a perfect circle in time. In 2D slices of 3D random fields the
distribution in space of the C points is reminiscent of that of interacting
particles. With near-field experiments we show that when light becomes truly
2D, this has severe consequences for the distribution of C points in space. The
most notable change is that the probability of finding two C points with the
same topological charge at a vanishing distance is enhanced in a 2D field. This
is an unusual finding for any system which exhibits topological singularities
as same-charge repulsion is typically observed. All our experimental findings
are supported with theory and excellent agreement is found between theory and
experiment
Spatial distribution of phase singularities in optical random vector waves
We acknowledge funding from ERC Advanced, Investigator Grant (no. 240438-CONSTANS). ADF acknowledges support from EPSRC (EP/L017008/1).Phase singularities are dislocations widely studied in optical fields as well as in other areas of physics. With experiment and theory we show that the vectorial nature of light affects the spatial distribution of phase singularities in random light fields. While in scalar random waves phase singularities exhibit spatial distributions reminiscent of particles in isotropic liquids, in vector fields their distribution for the different vector components becomes anisotropic due to the direct relation between propagation and field direction. By incorporating this relation in the theory for scalar fields by Berry and Dennis, we quantitatively describe our experiments.PostprintPeer reviewe
Josephson surface plasmons in spatially confined cuprate superconductors
In this work, we generalize the theory of localized surface plasmons to the
case of high-Tc cuprate superconductors, spatially confined in the form of
small spherical particles. At variance from ordinary metals, cuprate
superconductors are characterized by a low-energy bulk excitation known as the
Josephson plasma wave (JPW), arising from interlayer tunneling of the
condensate along the c-axis. The effect of the JPW is revealed in a
characteristic spectrum of surface excitations, which we call Josephson surface
plasmons. Our results, which apply to any material with a strongly anisotropic
electromagnetic response, are worked out in detail for the case of multilayered
superconductors supporting both low-frequency (acoustic) and transverse-optical
JPW. Spatial confinement of the Josephson plasma waves may represent a new
degree of freedom to engineer their frequencies and to explore the link between
interlayer tunnelling and high-Tc superconductivity
Strong coupling between a dipole emitter and localized plasmons: enhancement by sharp silver tips
In this work sharp silver nanotips are analyzed and proposed as useful plasmonic tools to reduce the threshold for the onset of strong coupling in the electromagnetic interaction of a point-like emitter with localized surface plasmons. If compared to similarly-sized spherical nanoparticles, conically-shaped nanoparticles turn out to be extremely useful to reduce the oscillator strength requirements for the emitting dipole, a reduction of the threshold by one sixth being obtained in a double cone configuration. Moreover the transition to the strong coupling regime is analyzed for several cone apertures, revealing a nonmonotonic behavior with the appearance of an optimal cone geometry. The emitted-light spectrum is obtained from the computation of the perturbative decay rate and photonic Lamb shift in the classical framework of the Discrete Dipole Approximation. This combined
classical-quantum electrodynamics treatment is useful for the theoretical investigation on nonperturbative light-matter interactions involving complex shaped nanoparticles or aggregates