29 research outputs found

    Electronic, dielectric and optical properties of two dimensional and bulk ice: a multi-scale simulation study

    Full text link
    The intercalated water into nanopores exhibits anomalous properties such as ultralow dielectric constant.~Multi-scale modeling and simulations are used to investigate the dielectric properties of various crystalline two-dimensional ices and bulk ices. Although, the structural properties of two-dimensional (2D-) ices have been extensively studied, much less is known about their electronic and optical properties. First, by using density functional theory (DFT) and density functional perturbation theory (DFPT), we calculate the key electronic, optical and dielectric properties of 2D-ices. Performing DFPT calculations, both the ionic and electronic contributions of the dielectric constant are computed. The in-plane electronic dielectric constant is found to be larger than the out-of-plane dielectric constant for all the studied 2D-ices. The in-plane dielectric constant of the electronic response is found to be isotropic for all the studied ices. Secondly, we determined the dipolar dielectric constant of 2D-ices using molecular dynamics simulations (MDS) at finite temperature. The total out-of-plane dielectric constant is found to be larger than 2 for all the studied 2D-ices. Within the framework of the random-phase approximation (RPA), the absorption energy ranges for 2D-ices are found to be in the ultraviolet spectra. For the comparison purposes, we also elucidate the electronic, dielectric and optical properties of four crystalline ices (ice VIII, ice XI, ice Ic and ice Ih) and bulk water

    Structurally Tunable pH-responsive Phosphine Oxide Based Gels by Facile Synthesis Strategy

    Get PDF
    Design and synthesis of nanostructured responsive gels have attracted increasing attention, particularly in the biomedical domain. Polymer chain configurations and nanodomain sizes within the network can be used to steer their functions as drug carriers. Here, a catalyst-free facile one-step synthesis strategy is reported for the design of pH-responsive gels and controlled structures in nanoscale. Transparent and impurity free gels were directly synthesized from trivinylphosphine oxide (TVPO) and cyclic secondary diamine monomers via Michael addition polymerization under mild conditions. NMR analysis confirmed the consumption of all TVPO and the absence of side products, thereby eliminating post purification steps. The small-angle X-ray scattering (SAXS) elucidates the nanoscale structural features in gels, that is, it demonstrates the presence of collapsed nanodomains within gel networks and it was possible to tune the size of these domains by varying the amine monomers and the nature of the solvent. The fabricated gels demonstrate structure tunability via solvent–polymer interactions and pH specific drug release behavior. Three different anionic dyes (acid blue 80, acid blue 90, and fluorescein) of varying size and chemistry were incorporated into the hydrogel as model drugs and their release behavior was studied. Compared to acidic pH, a higher and faster release of acid blue 80 and fluorescein was observed at pH 10, possibly because of their increased solubility in alkaline pH. In addition, their release in phosphate buffered saline (PBS) and simulated body fluid (SBF) matrix was positively influenced by the ionic interaction with positively charged metal ions. In the case of hydrogel containing acid blue 90 a very low drug release (<1%) was observed, which is due to the reaction of its accessible free amino group with the vinyl groups of the TVPO. In vitro evaluation of the prepared hydrogel using human dermal fibroblasts indicates no cytotoxic effects, warranting further research for biomedical applications. Our strategy of such gel synthesis lays the basis for the design of other gel-based functional materials

    Oxidative cyclization of prodigiosin by an alkylglycerol monooxygenase-like enzyme

    Get PDF
    Prodiginines, which are tripyrrole alkaloids displaying a wide array of bioactivities, occur as linear and cyclic congeners. Identification of an unclustered biosynthetic gene led to the discovery of the enzyme responsible for catalyzing the regiospecific C-H activation and cyclization of prodigiosin to cycloprodigiosin in Pseudoalteromonas rubra. This enzyme is related to alkylglycerol monooxygenase and unrelated to RedG, the Rieske oxygenase that produces cyclized prodiginines in Streptomyces, implying convergent evolution
    corecore