34 research outputs found

    Exosite inhibition of ADAMTS-5 by a glycoconjugated arylsulfonamide

    Get PDF
    ADAMTS-5 is a major protease involved in the turnover of proteoglycans such as aggrecan and versican. Dysregulated aggrecanase activity of ADAMTS-5 has been directly linked to the etiology of osteoarthritis (OA). For this reason, ADAMTS-5 is a pharmaceutical target for the treatment of OA. ADAMTS-5 shares high structural and functional similarities with ADAMTS-4, which makes the design of selective inhibitors particularly challenging. Here we exploited the ADAMTS-5 binding capacity of β-N-acetyl-d-glucosamine to design a new class of sugar-based arylsulfonamides. Our most promising compound, 4b, is a non-zinc binding ADAMTS-5 inhibitor which showed high selectivity over ADAMTS-4. Docking calculations combined with molecular dynamics simulations demonstrated that 4b is a cross-domain inhibitor that targets the interface of the metalloproteinase and disintegrin-like domains. Furthermore, the interaction between 4b and the ADAMTS-5 Dis domain is mediated by hydrogen bonds between the sugar moiety and two lysine residues (K532 and K533). Targeted mutagenesis of these two residues confirmed their importance both for versicanase activity and inhibitor binding. This positively-charged cluster of ADAMTS-5 represents a previously unknown substrate-binding site (exosite) which is critical for substrate recognition and can therefore be targeted for the development of selective ADAMTS-5 inhibitors

    Globalisation as a challenge or opportunity for organic farming

    Get PDF
    During one intensive week in October 2005, the authors were gathered to discuss the impact that globalisation has on the Organic Food Systems and the opportunities that globalisation opens up for developing these systems. The meeting took place as a Ph.D. course under the auspices of the Research School of Organic Farming and Food Systems (SOAR; www.soar.dk). All participants research within Organic Agriculture and Food Production in one way or another

    Influence of DMSO on Carbon K ultrasoft X-rays induced chromosome aberrations in V79 Chinese hamster cells.

    No full text
    Ultrasoft X-rays have been shown to be very efficient in inducing chromosomal aberrations in mammalian cells. The present study was aimed to evaluate the modifying effects of DMSO (a potent scavenger of free radicals) on the frequencies of chromosome aberrations induced by soft X-rays. Confluent held G1 Chinese hamster cells (V79) were irradiated with Carbon K ultrasoft X-rays in the presence and absence of 1M DMSO and frequencies of chromosome aberrations in the first division cells were determined. DMSO reduced the frequencies of exchange types of aberrations (dicentrics and centric rings) by a factor of 2.1-3.5. The results indicate that free radicals induced by ultrasoft X-rays contribute to a great extent to the induction of chromosome aberrations. The possible implications of these results in interpreting the mechanisms involved in the high efficiency of ultrasoft X-rays in the induction of chromosome aberrations are discussed

    Exosite inhibition of A Disintegrin And Metalloproteinase with Thrombospondin motif (ADAMTS)-5 by a glycoconjugated arylsulfonamide

    No full text
    ADAMTS-5 is a major protease involved in the turnover of proteoglycans such as aggrecan and versican. Its aggrecanase activity has been directly linked to the etiology of osteoarthritis (OA), identifying ADAMTS-5 as a pharmaceutical target for OA treatment. However, most existing ADAMTS-5 inhibitors target its active site and therefore suffer from poor selectivity. Here, using a novel approach, we have designed a new class of sugar-based arylsulfonamide inhibitors, which are selective for ADAMTS-5 through binding to a previously unknown substrate-binding site (exosite). Docking calculations combined with molecular dynamics simulations demonstrated that our lead compound is a cross-domain inhibitor that targets the interface of the metalloproteinase and disintegrin-like domains. Targeted mutagenesis identified disintegrin-like domain residues K532 and K533 as an exosite which is critical for substrate recognition. Furthermore, we show that this exosite acts as major determinant for inhibitor binding and, therefore, can be targeted for development of selective ADAMTS-5 inhibitors
    corecore