25,510 research outputs found

    Characterisation of friction and lubrication regimes in premium tubular connections

    Get PDF
    A friction test rig has been developed to carry out repeated sliding friction tests for premium tubular connections. The test rig enables accurate measurement of friction in various contact regimes which are relevant to the threaded connections between tubular components. Higher load tests can simulate the contact in metal-to-metal seals under very high contact pressures by using perpendicular pin-on-pin tests. The contact in the thread loading flank under intermediate pressures can be simulated by using larger radius coupon-on-coupon tests. The measured coefficient of friction is well correlated with a lubrication parameter combining lubricant film thickness and initial surface roughness. © 2012 Elsevier Ltd. All rights reserved

    The missing ingredient in effective-medium theories: Standard deviations

    Full text link
    Effective-medium theories for electromagnetic constitutive parameters of particulate composite materials are theories of averages. Standard deviations are absent because of the lack of rigorous theories. But ensemble averages and standard deviations can be calculated from a rigorous theory of reflection by planar multilayers. Average reflectivities at all angles of incidence and two orthogonal polarization states for a multilayer composed of two kinds of electrically thin layers agree well with reflectivities for a single layer with the same overall thickness and a volume-weighted average of the relative permittivities of these two components. But the relative standard deviation can be appreciable depending on the angle of incidence and the polarization state of the incident illumination, and increases with increasing difference between the constitutive parameters of the two layers. This suggests that average constitutive parameters obtained from effective-medium theories do not have uniform validity for all calculations in which they might be used.Comment: 12 pages (accepted for publication in Journal of Modern Optics

    Advanced solutions for quality-oriented multimedia broadcasting

    Get PDF
    Multimedia content is increasingly being delivered via different types of networks to viewers in a variety of locations and contexts using a variety of devices. The ubiquitous nature of multimedia services comes at a cost, however. The successful delivery of multimedia services will require overcoming numerous technological challenges many of which have a direct effect on the quality of the multimedia experience. For example, due to dynamically changing requirements and networking conditions, the delivery of multimedia content has traditionally adopted a best effort approach. However, this approach has often led to the end-user perceived quality of multimedia-based services being negatively affected. Yet the quality of multimedia content is a vital issue for the continued acceptance and proliferation of these services. Indeed, end-users are becoming increasingly quality-aware in their expectations of multimedia experience and demand an ever-widening spectrum of rich multimedia-based services. As a consequence, there is a continuous and extensive research effort, by both industry and academia, to find solutions for improving the quality of multimedia content delivered to the users; as well, international standards bodies, such as the International Telecommunication Union (ITU), are renewing their effort on the standardization of multimedia technologies. There are very different directions in which research has attempted to find solutions in order to improve the quality of the rich media content delivered over various network types. It is in this context that this special issue on broadcast multimedia quality of the IEEE Transactions on Broadcasting illustrates some of these avenues and presents some of the most significant research results obtained by various teams of researchers from many countries. This special issue provides an example, albeit inevitably limited, of the richness and breath of the current research on multimedia broadcasting services. The research i- - ssues addressed in this special issue include, among others, factors that influence user perceived quality, encoding-related quality assessment and control, transmission and coverage-based solutions and objective quality measurements

    A Compact Representation of Histopathology Images using Digital Stain Separation & Frequency-Based Encoded Local Projections

    Full text link
    In recent years, histopathology images have been increasingly used as a diagnostic tool in the medical field. The process of accurately diagnosing a biopsy sample requires significant expertise in the field, and as such can be time-consuming and is prone to uncertainty and error. With the advent of digital pathology, using image recognition systems to highlight problem areas or locate similar images can aid pathologists in making quick and accurate diagnoses. In this paper, we specifically consider the encoded local projections (ELP) algorithm, which has previously shown some success as a tool for classification and recognition of histopathology images. We build on the success of the ELP algorithm as a means for image classification and recognition by proposing a modified algorithm which captures the local frequency information of the image. The proposed algorithm estimates local frequencies by quantifying the changes in multiple projections in local windows of greyscale images. By doing so we remove the need to store the full projections, thus significantly reducing the histogram size, and decreasing computation time for image retrieval and classification tasks. Furthermore, we investigate the effectiveness of applying our method to histopathology images which have been digitally separated into their hematoxylin and eosin stain components. The proposed algorithm is tested on the publicly available invasive ductal carcinoma (IDC) data set. The histograms are used to train an SVM to classify the data. The experiments showed that the proposed method outperforms the original ELP algorithm in image retrieval tasks. On classification tasks, the results are found to be comparable to state-of-the-art deep learning methods and better than many handcrafted features from the literature.Comment: Accepted for publication in the International Conference on Image Analysis and Recognition (ICIAR 2019

    Assessing photochemical ozone formation in the Pearl River Delta with a photochemical trajectory model

    Get PDF
    A photochemical trajectory model (PTM), coupled with the Master Chemical Mechanism (MCM) describing the degradation of 139 volatile organic compounds (VOCs) in the troposphere, was developed and used for the first time to simulate the formation of photochemical pollutants at Wangqingsha (WQS), Guangzhou during photochemical pollution episodes between 12 and 17 November, 2007. The simulated diurnal variations and mixing ratios of ozone were in good agreement with observed data (R2=0.80, P<0.05), indicating that the photochemical trajectory model - an integration of boundary layer trajectories, precursor emissions and chemical processing - provides a reasonable description of ozone formation in the Pearl River Delta (PRD) region. Calculated photochemical ozone creation potential (POCP) indices for the region indicated that alkanes and oxygenated organic compounds had relatively low reactivity, while alkenes and aromatics presented high reactivity, as seen in other airsheds in Europe. Analysis of the emission inventory found that the sum of 60 of the 139 VOC species accounted for 92% of the total POCP-weighted emission. The 60 VOC species include C2-C6 alkenes, C6-C8 aromatics, biogenic VOCs, and so on. The results indicated that regional scale ozone formation in the PRD region can be mainly attributed to a relatively small number of VOC species, namely isoprene, ethene, m-xylene, and toluene, etc. A further investigation of the relative contribution of the main emission source categories to ozone formation suggested that mobile sources were the largest contributor to regional O3 formation (40%), followed by biogenic sources (29%), VOC product-related sources (23%), industry (6%), biomass burning (1%), and power plants (1%). The findings obtained in this study would advance our knowledge of air quality in the PRD region, and provide useful information to local government on effective control of photochemical smog in the region. © 2010 Elsevier Ltd
    corecore