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Abstract 

A friction test rig has been developed to carry out repeated sliding friction tests for 

premium tubular connections. The test rig enables accurate measurement of friction in 

various contact regimes which are relevant to the threaded connections between tubular 

components.  Higher load tests can simulate the contact in metal-to-metal seals under 

very high contact pressures by using perpendicular pin-on-pin tests.  The contact in the 

thread loading flank under intermediate pressures can be simulated by using larger 

radius coupon-on-coupon tests. The measured coefficient of friction is well correlated 

with a lubrication parameter combining lubricant film thickness and initial surface 

roughness. 
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1. INTRODUCTION 

In the oil and gas industry pipe strings are sections of pipe which are connected to 

a flow conduit.  These strings transport hydrocarbons from the bottom of the well to the 

surface and each could be regarded as a long pressure vessel extending from the harsh 

producing zones to the well head and beyond. The tubular connections are increasingly 

exposed to harsh down-hole production environment, such exposure is likely to increase 

as the search for hydrocarbons goes deeper. To maintain working pressures it is 

important that the connections are fully sealed by applying the correct torque to the 

threaded pipe connections so that sufficient pre-load is generated in the metal-to-metal 

seal of a connection.  

Connection assembly torque values are heavily dependent on the system’s 

contacts on the seal and thread areas as shown in Fig. 1(a). The coefficient of friction 

(CoF) can be calculated from the measured make-up torque using full-scale test setup 

(shown in Fig. 1(b)). The apparatus is made up of three sections: a motor, a torque 

transducer and a rotation transducer. The motor provides the specimen with rotation and 

torque. The torque transducer resists the rotational motion and produces an output 

signal. The rotational transducer produces an output signal which is proportional to the 

angle through which the specimen is rotated. The make-up torque is dependent on the 

coefficient of friction according to a well-established torque equation: 
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where pr is the pre-load on the shoulder, dm the mean diameter of the thread, dc the 

mean diameter of the shoulder, l the lead of the thread, µ the coefficient of friction and β 

the flank angle of the thread. Tests are usually performed until yielding occurs. The pre-

load can then be estimated for given geometry and yield strength so that the coefficient 

of friction can be extracted from yield torque. Due to the expense of such testing it is 

not viable to test all combinations of size, weight and grade of steel. Extrapolation is 

therefore used to obtain torque values for the untested sizes. Extrapolation and 

interpolation of torque data can become unreliable due to the nonlinear effects of 

contact pressure, operating speed and surface conditions. Therefore a laboratory test 

system is desired for product development. 
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(a) 

 

 
(b) 

Figure 1: (a) Elements of a premium pipe connection and (b) pipe connection 

bucking unit. 

 

Because the coefficient of friction is dependent on the system being tested, it is 

important that tests carried out in the laboratory are representative of actual field 

conditions. To measure the coefficient of friction for a so-called premium connection, 

the main parameters of interest are velocity, sliding distance, contact pressure, surface 

condition and lubricant.  

Various laboratory test methods were reviewed by Podgornik et al [1]. The most 

simple and widely used procedure for general friction testing is the pin-on-disc method. 
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In this test, the pin is held stationary and the disc is rotated beneath it generating a 

circumferential wear track on the disc [2]. Adjustment of pin location is needed to 

ensure that a new surface of the disc is used each time. A major disadvantage of this set-

up is that the speed of the disc must be altered continually to give a steady sliding speed 

between the pin and disc. There is also difficulty in controlling the surface quality of the 

usually spherical pin head. This does not always fully represent a real component and is 

only an idealised and simplified case.  Off the shelf pin-on-disc [3] machines usually 

operate at sliding speeds between 0.05 and 10 m/s which are considerably higher than 

the rates involved in normal premium connection assembly. If the pin tip is initially 

spherical then there will be non-conformal contact between the two surfaces generating 

high pressures which gradually reduce with time and wear [2].   

Other geometries commonly used are pin-on-cylinder and crossed cylinder 

arrangements convenient for point contact because samples can be manufactured with a 

consistent surface roughness. Carper et al [4] used a conical pin and box with coincident 

tapers to measure coefficient of friction. The normal load was ramped up while the pin 

was rotated against the box. The coefficient of friction was extracted from the torque 

applied and the axial force. This test method requires large axial force to generate 

required contact pressure and hence large experimental device.   

 

 
 

Figure 2: Test 5A3 3
rd

 Edition Test Pieces [5] 
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One existing method used to test the friction in a premium tubular connection is 

the nut buster test described in the 3
rd

 Edition of API (American Petroleum Institute) 

5A3 Test Procedure [5]. This involves rotating a nut on bolt assembly (shown in Fig. 2) 

until a specified pre-load is achieved. Coefficients of friction are extracted from the 

torque data and the estimated contact pressure from the angle of rotation. This is subject 

to significant error due to the inaccuracy of the dimensions and the assumption of the 

contact pressure. However, the API test apparatus geometry is also different to that of 

the connection of interest. The test generates only 200 to 400 MPa (i.e. 30 – 65 ksi) of 

contact pressure on the loading collar and the average pressure in the threads in these 

tests is expected to be below 260 MPa (40 ksi). This is significantly lower than the 

contact pressure on the seal (0.7 – 2 GPa i.e. 100 – 300 ksi), though, according to FEA, 

is representative of the contact pressure on the threaded section of the connection. 

This paper describes the development of a laboratory testing procedure to 

investigate systematically the effects of premium connection contact pressure, sliding 

speed, surface conditions and lubricants on the CoF. It includes a case study on an 

existing commercial system (Clear-Run®) used in today’s oil and gas fields which has 

been developed by Hunting Energy Services in collaboration with MP Eastern and RS 

Clare [6]. The lubricant used is Clear-Glide which has a viscosity of about 50,000 cP at 

25°C. The lubrication regime under these conditions will be analysed using classic 

lubrication theory.  

2. FRICTION TEST RIG 

The test rig used in this work is shown in Fig. 3.  It was designed so that the 

samples in the form either of cylinders, of radius 6 mm, or coupons, with a cylindrical 

surface of radius 60 mm, could be pressed together with their axes at 90°. The upper 

stationary sample represents the pipe end whilst the lower moving sample represents the 

coupling. In one configuration the axis of the lower specimen is parallel to its motion so 

that the contact point on the upper surface remains at rest during the test, as illustrated 

in Fig. 4(a), while the point of contact moves along the lower cylindrical surface. This 

configuration simulates the real connection system because during the make-up of the 

connection, the thread of the pipe is subjected to continuous sliding with the new thread 

of the coupling. The test can also illustrate the effect of burnishing, by repeated contact, 

of the top sample. 
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(a) 

 

(b) 
 

Figure 3 Cross-cylinder friction and galling test rig set-up (a) schematic (b) 

embodiment 

 

In an alternative arrangement, the axes of both specimens are inclined at 45° to 

their motion so that the point of contact between them traces out a linear path on each, 

as indicated in Fig. 4(b). This can be used to investigate the critical load that causes 

galling (not investigated here). Only the first cycle exposes the test specimens to a fresh 

surface, the second and third cycles are executed on the same surface as the first cycle. 

Top Sample 

Load Cell  

Tilt Table  

Bottom Sample 

Motorised Sliding Table  
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Figure 4: Sample configurations for (a) contact stationary on top sample and (b) 

contact moving on both samples 

 

In each case, the lower specimen is carried on a stage whose tilt can be adjusted so 

that the normal load between the specimens increases during the course of the test, see 

Fig. 3(a).  In the present work, each test consisted of a number of cycles, completed 

consecutively. Lubricant was reapplied between each load cycle to replicate the 

conditions of the real pipe connection make-up situation.   

Both normal force W   and tangential force F  were measured simultaneously 

using sixteen strain gauges fixed on the four legs of the specially designed load cell. 

This is of a similar design to the two component load cell reported previously by the 

authors [7, 8]. The output normal and tangential voltages were filtered through their 

respective amplifiers and then fed into a data logging card interfaced with the PC using 

LabVIEW®. The coefficient of friction is simply defined as the ratio of F  to W . 

Similar work was undertaken by Baragetti et al [9] where strain gauges were mounted 

on conical threaded connections however this method is much more expensive and 

gives opportunity for fewer variables. 

The load cell was calibrated by applying dead weight loading in the normal and 

tangential directions and measuring the resultant cross-talk between the two force 

measuring systems. This was found to increase linearly with load and to be of the order 

of 12%.  A further correction, of the order of 10%, to account for the change of position 

of the point of application of the load in relation to the load measuring elements of the 
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dynamometer was also found necessary. Normal loads up to 500 N could be applied and 

the lower specimen could be traversed at speeds up to 100 mm s1 . 

3. EXPERIMENTAL RESULTS 

3.1 Pressure regimes 

The highest pressure and stress concentration occurring on the final threads and 

the seal [10] and this must be sufficient to maintain a seal between the mating parts. 

However, it is also important that this stress does not exceed some maximum value as 

this can cause plastic deformation and create a leak path [11].  

The test samples were machined from commercial 13 Cr steel provided by JFE 

Steel Co, Japan. Coupons were cut from 13 Cr steel pipes using electrical discharge 

machining (EDM). The surface roughness of the test surfaces was measured using Zygo 

3D surface profile meter. The results are shown in Table I. It is noted that the coupons 

are much rougher than the pins. This is due to the different machine process. Coupon 

samples were cut from a pipe with an outer diameter 120mm and inner diameter 

100mm. Although the pipe was turned on the same lathe as the pins, the speed and feed 

rate were different which gave rise to different surface finish. However, each is 

representative of specific feature in the connection system. The pin has similar surface 

finish to the seal while the coupon to the thread.  

Table I Average surface roughness of test samples 

 Regime 1 - Pins Regime 2 - Coupons 

Surface treatment As-

machined 

Ceramic 

peened 

Clear-

Plate 

As-

machined 

Ceramic 

peened 

Clear-

Plate 

Surface roughness, Ra (µm) 0.242 0.308 0.208 0.973 1.063 1.018 

Surface roughness, Rq (µm) 0.307 0.405 0.261 1.365 1.748 1.232 

 

Samples were machined into both pins of radius 6 mm and coupons of surface 

radius 60 mm.  This was necessary in order to cover the range of contact pressures 

required viz. 140 MPa to 2 GPa, i.e. 20 – 300 ksi.  The contact conditions between two 

equal cylinders of radius R   crossing at 90° can be thought of as equivalent to those 

between a sphere of radius R*  R / 2   and a plane surface.  Thus, on the basis of elastic 
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contact and smooth surfaces, the mean contact pressure p , the plane strain modulus E   

defined as E / (12 )  and the normal load W are related by the expression [12], 

3/1

2*

2'

9

161
















R

WE
p


    (2) 

The relation between the magnitudes of the applied normal loads and mean 

contact pressures are as shown in Table II for the two configurations used in the tests 

i.e. crossed pins and crossed coupons. 

Table II Relation between applied normal load and mean contact pressure 

 pin-on-pin 

Regime 1 

coupon-on-coupon 

Regime 2 

Load W  (N) 7.9 440 13 593 

Mean contact pressure p  (MPa) 550 2100 140 500 

 

In what follows we refer to the higher pressure tests achieved by using the crossed 

pin configuration as Regime 1 and the lower pressure tests using the larger radii 

coupons as Regime 2. 

The Clear-Run system used in this work consists of a coating, Clear-Plate®, 

applied to one of the mating surfaces.  The opposing, uncoated surface is conventionally 

shot peened to reduce the propensity for galling at high interfacial pressures.  Before 

assembly both surfaces are lubricated by an application of a lubricant known as Clear-

Glide®.  Only a thin layer needs to be applied to both pin and coupling thus reducing 

the extent of down-hole contamination. The transparency of both elements of the system 

allows for easy inspection of the threads without having to remove the lubricant. 

Ceramic beads, stainless steel beads, aluminium oxide and glass particles are commonly 

used as the peening media. 

3.2 Simulation of Clear-Run® system in Regime 1 and Regime 2 

For each of these tests, which were run at a sliding speed of 15mms1
, the Clear-

Plate® coated pin was used as the lower specimen which was loaded against an either 

as-machined or ceramic-peened sample mounted in the top sample holder.  In both cases 
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Clear-Glide® was used as a lubricant. The results for Regime 1 are shown in Fig. 5(a) 

and (b) in which the coefficient of friction is plotted against the mean contact pressure.  

Initially, the test was set up to perform three motion cycles (labelled 1, 2 and 3) and the 

coefficient of friction was determined for both the loading (+) and unloading (-) part of 

each cycle.  

 
(a) 

 
(b) 

Figure 5: Comparison between as-machined and ceramic-peened surfaces for 

regime 1 (600 to 2200 MPa). Tests carried out at 15mm/s with Clear-Glide 

lubricant, bottom sample made from Clear-Plate and top sample made from (a) 

As-machined or (b) Ceramic-peened 



 

 11 

Direction of travel 

(b) 

Images of the samples involved in each combination were taken to compare the 

wear marks between different materials on the samples after the tests using the 1mm 

length scale on each photo. Figure 6 shows the Clear-Plate® and ceramic peened 

samples after the test. These demonstrate that while the peened surface was burnished 

there was no severe galling or pick-up on or from the Clear-Plate® surface.  

 

 

 

Figure 6 (a) Wear track on Clear-Plate® from test with ceramic peened sample 

and (b) mark on the ceramic-peened surface 

Wear track 

(a) 
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A similar test was repeated for Regime 2 using the perpendicular coupon-on-

coupon configuration. Figures 7(a) and (b) show respectively the graphs for coefficient 

of friction against contact pressure for values between 140 and 500 MPa (20 to 70 ksi) 

for a ceramic peened surface sliding against an as-machined surface and for one coated 

with Clear-Plate®. 

 
(a) 

 

 
(b) 

 

Figure 7: Comparison between as-machined and ceramic peened surfaces for 

regime 2 (150 to 450 MPa). Tests performed at 15mm/s with Clear-Glide lubricant, 

bottom sample made from Clear-Plate and top sample made from (a) as-machined 

or (b) ceramic-peened 
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3.3 Effect of initial surface treatments and sliding speed 

Figure 8 compares the average coefficient of friction (over the test pressure range) 

measured using Clear-Plate® coupon surfaces running against either as-machined or 

shot-peened counterfaces. Both situations were lubricated by Clear-Glide®.  Three 

complete cycles, i.e. 6 strokes, had been performed for each combination at a sliding 

speed of 15  mms1
.  Each CoF value is the average for the pressure range 140 and 

500 MPa (20 to 70 ksi). The results showed that CoF decreases by about 20% from the 

first stroke to the sixth stroke for both conditions. This will be discussed in the next 

section. 

Figure 9 shows a comparison of the effect of both speed and burnishing, i.e. 

repeated passes, for the ceramic peened Clear-Plate® with Clear-Glide® combination. 

The graph shows CoF against the cycle number for three different sliding speeds viz. 

3, 15and 50 mms1
.  Each test was performed 10 times to find out the effect of 

burnishing of the surface. The largest difference between the values of CoF is between 

the first cycle and the second, where the CoF reduces by approximately 20%.  This is 

consistent for the three speeds. After this initial reduction, the coefficient of friction 

stabilises to a consistent value.  The graph also detailed another observation that the 

sliding velocity affected the average CoF for the system by a notable amount.  
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Figure 8: Comparison of as-machined and ceramic-peened coupon tests on Clear-

Plated coupon using Clear-Glide lubricant 

 

 
 

Figure 9: The effects of speed and burnishing on CoF. The curves are best fit to 

experimental data using the error function 

 

4. DISCUSSION 

The results of the tests show that the CoF in the first stroke is always higher than the 

second stroke (c.f. Figs. 5 and 7). This is similar to the running-in phenomenon 

observed in piston engine operation in which piston friction decreases with time as the 

more prominent surface asperities become burnished and so more benign. It is noted 

that this burnishing effect happens more rapidly in Regime 1 (c.f. Fig. 5) than in 

Regime 2 (c.f. Fig. 7). This is what one would expect as a result of the contact pressures 

in Regime 1 being greater than those in Regime 2.  According to conventional abrasive 

wear mechanics[13], the depth tw  of the worn layer is proportional to the applied 

contact pressure, so that 

tw 
Kps

H
,      (3) 

where p  is the nominal contact pressure, K  the non-dimensional wear constant, s   the 

sliding distance and H   the material hardness. For the same material and the same wear 

depth, which might reasonably be associated with the extent of surface burnishing, the 
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sliding distance required will be inversely proportional to the contact pressure. The 

surface is therefore burnished more rapidly in the higher pressure Regime 1 tests than in 

the less severe contacts of Regime 2. It is also noted that the CoF results at higher 

pressure end of Regime 2 tests are not converging the results of the lower end of 

Regime 1 tests. This is owing to the very different surface roughness on coupons and 

pins. They are not directly comparable.  

Figure 5 demonstrates the differences in the measured values of the CoF for the 

as-machined and ceramic peened surfaces under Regime 1.  After the initial pass at the 

higher pressures, both display a CoF of ca. 0.15.  However, at the lower values of 

contact pressure, the CoFs of the as-machined surfaces are significantly lower than 

those of the ceramic peened specimens.  This is an indication of the contribution of 

hydrodynamic lubrication to the overall resistance to shear. According to Hamrock and 

Dowson[14], the central lubricant film thickness hcen  with a point contact can be 

derived from the relation  

hcen  3.34R
u

E R








0.64
W

E R
2








0.22

,   (4) 

where    is the viscosity of the lubricant and u  the entraining speed (in this case half of 

the speed of sliding).  The lubricant film thickness decreases with increasing load and 

hence the increase in the ‘real’ asperity-to-asperity contact ratio. With the ceramic-

peened surfaces, the CoF is fairly stable over the whole pressure range. This is typical 

of boundary lubrication regime.  In both cases, the CoF converges to a value of about 

0.15 towards the maximum pressure of 2.2 GPa. Tests in Regime 2, Fig. 7, show that 

the CoF increases with contact pressure for both as-machined and ceramic peened 

sample. Again this can be associated with the extent of hydrodynamic lubrication. 

According to equation (4), the lubricant film thickness is proportional to R
0.8

. Even 

with the larger radius ceramic-peened surfaces, the lubricant film is significant.  

The ratio   of lubricant film thickness to combined rms surface roughness is 

often used as a lubrication parameter and given by 

 
hcen

Rq,1
2  Rq,2

2
,      (5) 
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where Rq,1  is the rms roughness of top surface and Rq,2  of bottom surface. The values 

of   associated with the current tests are summarised in Table III, based on a sliding 

velocity of 15 mm s1  and the surface roughness data in Table I.  

Table III Lubrication parameter for the tests performed at 15 mm.s
-1 

 

 pin-on-pin 

Regime 1 

coupon-on-coupon 

Regime 2 

Surface treatments as-

machined 

ceramic 

peened 

as-

machined 

ceramic 

peened 

Lamda ratio   for W=10N 1.322 1.002 1.783 1.533 

Lamda ratio    for W=500N 0.426 0.356 0.754 0.648 

 

The average amplitude based on Christensen model of surface roughness [15] is 

about 3 times the rms roughness. When   3, the lubricant film is larger than the 

average amplitude of surface roughness so that the contact surfaces will be separated by 

a full or hydrodynamic film. When   0.3 , the average lubricant film thickness is 

below a tenth of the amplitude of the surface roughness so that the asperity-to-asperity 

contact ratio will be large and boundary lubrication will be dominant. Table III indicates 

that in many cases   is larger than 0.3 but below 3.0 so that the lubrication is in the 

‘mixed’ regime. With a maximum load of 500 N in current tests and ceramic peened 

surface, the   ratio is close to 0.3 so that boundary lubrication dominates. On the other 

hand, with minimum load of 10N and as-machined surface,   is much larger so that the 

hydrodynamic lubrication becomes important. 

In the ‘mixed’ lubrication regime where there is entrapped lubricant as well as 

asperity-to-asperity contact, the average CoF is a combination of shearing of lubricant 

and boundary lubrication which can be expressed as 

  Ab  1 A v ,     (6) 

where the value of 0  A 1  is a measure of the extent of ‘real’ asperity-to-asperity 

contact, b  is the boundary friction coefficient and v  is the CoF in the lubricated 

region [16].  Because the value of b  is likely to be much larger than that of v , which 

essentially depends on the shearing of lubricant, the average friction increases with 
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increasing value of the contact ratio A . Under the same lubricant film thickness, the 

contact ratio A  will increase with surface roughness. This explains the results in Fig. 8 

showing a higher CoF for tests with ceramic-peened than as-machined surfaces.  

Figure 9 confirms that as the sliding velocity increases, the CoF value is reduced. This 

is again related to the hydrodynamic effect which increases with speed and leads to a 

thicker lubricant film and hence a reduction in asperity-to-asperity contact. This will 

reduce the average coefficient of friction according to equation (6).  

The effect of burnishing is associated with the gradual removal of surface 

asperities. As these surface defects are removed, the real asperity-to-asperity contact 

ratio will decrease and stabilise at a reduced value. A function was determined to give a 

best-fit curve for CoF versus sliding distance which could fit the trend of CoF from the 

tests, viz  

CoF  0.218  0.069ln(v)  1 0.171erf (z)    (7) 

where v  is the sliding velocity and erf (z)  is the Guassian error function with  

z  4
l  l1

l2  l1
      (8) 

 in which l  is the sliding distance at a particular point, l1is the sliding distance of the 

first stroke and l2 is the sliding distance when the coefficient of friction stabilises. When 

l  reaches l2 , z 4  and the value of the error function approaches unity.  The 

comparison in Fig. 9 confirms that this function well describes the variation of friction 

with sliding distance: the physical justification is similar to the situation described in 

Kapoor et al [17] which models the influence of surface asperities on the initiation of 

scuffing.  

 

5. CONCLUSIONS  

A cross-cylinder friction test rig has been developed to simulate the sliding 

friction associated with threaded tubular connections. The test rig allowed for accurate 

measurement of coefficient of friction up to very high contact pressures under various 

combinations of surface finish, lubricant, sliding speed.   

The test rig enabled measurement of friction in two contact regimes relevant to 

premium tubular connections: Regime 1 under very high contact pressure 0.6 – 2.2 GPa 
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(80-300 ksi) using perpendicular pin-on-pin tests and Regime 2 under intermediate 

pressure 150 – 450 MPa (20-70 ksi) using a perpendicular coupon-on-coupon test.  

Test results have confirmed the observations in the field that initial surface 

treatment significantly affects the coefficient of friction. The burnishing of surface 

during assembly of tubular connections will significantly affect the stability of friction 

and thus affect the accuracy of pre-load on the metal-to-metal seal of the connection.  

Analysis of lubricant film thickness using Hamrock and Dowson theory and the 

surface roughness indicates that the lubrication regime is in ‘mixed’ regime at medium 

speed. The variation of coefficient of friction with speed, surface roughness and 

burnishing is well correlated with a lubrication parameter Λ.   
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Figure captions 

Fig. 1 (a) Elements of a premium pipe connection and (b) pipe connection bucking 

unit. 

Fig. 2  Test 5A3 3
rd

 Edition Test Pieces 

Fig. 3 Cross-cylinder friction and galling test rig set-up (a) schematic (b) embodiment 

Fig. 4 Sample configurations for (a) contact stationary on top sample and (b) contact 

moving on both samples 

Fig. 5 Comparison between as-machined and ceramic-peened surfaces for regime 1 (600 

to 2200 MPa). Tests carried out at 15mm/s with Clear-Glide lubricant, bottom sample 

made from Clear-Plate and top sample made from (a) As-machined or (b) Ceramic-

peened 

Fig. 6 (a) Wear track on Clear-Plate® from test with ceramic peened sample and (b) 

mark on the ceramic-peened surface 

Fig. 7 Comparison between as-machined and ceramic peened surfaces for regime 2 (150 

to 450 MPa). Tests performed at 15mm/s with Clear-Glide lubricant, bottom sample 

made from Clear-Plate and top sample made from (a) as-machined or (b) ceramic-

peened 

Fig. 8 Comparison of as-machined and ceramic-peened coupon tests on clear-plated 

coupon using Clear-Glide lubricant 

Fig. 9 The effects of speed and burnishing on CoF. The curves are best fit to 

experimental data using the error function 

 

 

 


