346 research outputs found

    Influence of massive material injection on avalanche runaway generation during tokamak disruptions

    Full text link
    In high-current tokamak devices such as ITER, a runaway avalanche can cause a large amplification of a seed electron population. We show that disruption mitigation by impurity injection may significantly increase the runaway avalanche growth rate in such devices. This effect originates from the increased number of target electrons available for the avalanche process in weakly ionized plasmas, which is only partially compensated by the increased friction force on fast electrons. We derive an expression for the avalanche growth rate in partially ionized plasmas and investigate the effects of impurity injection on the avalanche multiplication factor and on the final runaway current for ITER-like parameters. For impurity densities relevant for disruption mitigation, the maximum amplification of a runaway seed can be increased by tens of orders of magnitude compared to previous predictions. This motivates careful studies to determine the required densities and impurity species to obtain tolerable current quench parameters, as well as more detailed modeling of the runaway dynamics including transport effects.Comment: 6 pages, 2 figure

    Effect of impurities on the transition between minority ion and mode conversion ICRH heating in (3He)-H tokamak plasmas

    Get PDF
    Hydrogen majority plasmas will be used in the initial non-activated phase of ITER operation. Optimizing ion cyclotron resonance heating (ICRH) in such scenarios will help in achieving H-mode in these plasmas. Past JET experiments with the carbon wall revealed a significant impact of intrinsic impurities on the ICRH performance in (3He)-H plasmas relevant for the full-field initial ITER phase. High plasma contamination with carbon impurities resulted in the appearance of a supplementary mode conversion layer and significant reduction in the transition concentration of 3He minority ions, defined as the concentration at which the change from minority heating to mode conversion regime occurs. In view of the installation of the new ITER-like wall at JET, it is important to evaluate the effect of Be and W impurities on ICRH scenarios in (3He)-H plasmas. In this paper, an approximate analytical expression for the transition concentration of 3He minority ions is derived as a function of plasma and ICRH parameters, and accounting for typical impurity species at JET. The accompanying 1D wave modeling supports the analytical results and suggests a potential experimental method to reduce 3He level needed to achieve a specific heating regime by puffing a small amount of 4He ions additionally to (3He)-H plasma.Comment: 23 pages, 9 figure

    Interpretation of runaway electron synchrotron and bremsstrahlung images

    Full text link
    The crescent spot shape observed in DIII-D runaway electron synchrotron radiation images is shown to result from the high degree of anisotropy in the emitted radiation, the finite spectral range of the camera and the distribution of runaways. The finite spectral camera range is found to be particularly important, as the radiation from the high-field side can be stronger by a factor 10610^6 than the radiation from the low-field side in DIII-D. By combining a kinetic model of the runaway dynamics with a synthetic synchrotron diagnostic we see that physical processes not described by the kinetic model (such as radial transport) are likely to be limiting the energy of the runaways. We show that a population of runaways with lower dominant energies and larger pitch-angles than those predicted by the kinetic model provide a better match to the synchrotron measurements. Using a new synthetic bremsstrahlung diagnostic we also simulate the view of the Gamma Ray Imager (GRI) diagnostic used at DIII-D to resolve the spatial distribution of runaway-generated bremsstrahlung.Comment: 21 pages, 11 figure

    Mode Conversion of Waves in the Ion-Cyclotron Frequency Range in Magnetospheric Plasmas

    Get PDF
    Waves in the ion-cyclotron range of frequencies with linear polarization detected by satellites can be useful for estimating the heavy ion concentrations in planetary magnetospheres. These waves are considered to be driven by mode conversion (MC) of the fast magnetosonic waves at the ion-ion hybrid resonances. In this Letter, we derive analytical expressions for the MC efficiency and tunneling of waves through the MC layer. We evaluate the particular parallel wave numbers for which MC is efficient for arbitrary heavy ion/proton ratios and discuss the interpretation of the experimental observations

    Tunneling and mode conversion of fast magnetosonic waves in the magnetospheres of Earth and Mercury

    Full text link
    Narrow-band linearly polarized waves, having a resonant structure and a peak frequency between the local cyclotron frequency of protons and heavy ions, have been detected in the magnetospheres of Earth and of Mercury. Some of these wave events have been suggested to be driven by linear mode conversion (MC) of the fast magnetosonic waves at the ion-ion hybrid (IIH) resonances. Since the resonant IIH frequency is linked to the plasma composition, solving the inverse problem allows one to infer the concentration of the heavy ions from the measured frequency spectra. In this paper, we identify the conditions when the MC efficiency is maximized in the magnetospheric plasmas and discuss how this can be applied for estimating the heavy ion concentration in the magnetospheres of Earth and Mercury.Comment: 13 pages, 5 figure

    Effective Governance of Global Financial Markets:An Evolutionary Plan for Reform

    Get PDF
    Runaway electrons, which are generated in a plasma where the induced electric field exceeds a certain critical value, can reach very high energies in the MeV range. For such energetic electrons, radiative losses will contribute significantly to the momentum space dynamics. Under certain conditions, due to radiative momentum losses, a non-monotonic feature - a ‘bump' - can form in the runaway electron tail, creating a potential for bump-on-tail-type instabilities to arise. Here, we study the conditions for the existence of the bump. We derive an analytical threshold condition for bump appearance and give an approximate expression for the minimum energy at which the bump can appear. Numerical calculations are performed to support the analytical derivation

    DREAM: a fluid-kinetic framework for tokamak disruption runaway electron simulations

    Get PDF
    Avoidance of the harmful effects of runaway electrons (REs) in plasma-terminating disruptions is pivotal in the design of safety systems for magnetic fusion devices. Here, we describe a computationally efficient numerical tool, that allows for self-consistent simulations of plasma cooling and associated RE dynamics during disruptions. It solves flux-surface averaged transport equations for the plasma density, temperature and poloidal flux, using a bounce-averaged kinetic equation to self-consistently provide the electron current, heat, density and RE evolution, as well as the electron distribution function. As an example, we consider disruption scenarios with material injection and compare the electron dynamics resolved with different levels of complexity, from fully kinetic to fluid modes.Comment: 32 pages, 11 figure

    Runaway dynamics in the DT phase of ITER operations in the presence of massive material injection

    Get PDF
    A runaway avalanche can result in a conversion of the initial plasma current into a relativistic electron beam in high current tokamak disruptions. We investigate the effect of massive material injection of deuterium-noble gas mixtures on the coupled dynamics of runaway generation, resistive diffusion of the electric field, and temperature evolution during disruptions in the DT phase of ITER operations. We explore the dynamics over a wide range of injected concentrations and find substantial runaway currents, unless the current quench time is intolerably long. The reason is that the cooling associated with the injected material leads to high induced electric fields that, in combination with a significant recombination of hydrogen isotopes, leads to a large avalanche generation. Balancing Ohmic heating and radiation losses provides qualitative insights into the dynamics, however, an accurate modeling of the temperature evolution based on energy balance appears crucial for quantitative predictions.Comment: 24 pages, 8 figure

    Impurity transport in Alcator C-Mod in the presence of poloidal density variation induced by ion cyclotron resonance heating

    Full text link
    Impurity particle transport in an ion cyclotron resonance heated Alcator C-Mod discharge is studied with local gyrokinetic simulations and a theoretical model including the effect of poloidal asymmetries and elongation. In spite of the strong minority temperature anisotropy in the deep core region, the poloidal asymmetries are found to have a negligible effect on the turbulent impurity transport due to low magnetic shear in this region, in agreement with the experimental observations. According to the theoretical model, in outer core regions poloidal asymmetries may contribute to the reduction of the impurity peaking, but uncertainties in atomic physics processes prevent quantitative comparison with experiments.Comment: 32 pages, 12 figure

    Drift of ablated material after pellet injection in a tokamak

    Full text link
    Pellet injection is used for fuelling and controlling discharges in tokamaks, and it is foreseen in ITER. During pellet injection, a movement of the ablated material towards the low-field side (or outward major radius direction) occurs because of the inhomogeneity of the magnetic field. Due to the complexity of the theoretical models, computer codes developed to simulate the cross-field drift are computationally expensive. Here, we present a one-dimensional semi-analytical model for the radial displacement of ablated material after pellet injection, taking into account both the Alfv\'en and ohmic currents which short-circuit the charge separation creating the drift. The model is suitable for rapid calculation of the radial drift displacement, and can be useful for e.g. modelling of disruption mitigation via pellet injection.Comment: 22 pages, 4 figures. Submitted to Journal of Plasma Physic
    • 

    corecore