200 research outputs found

    Uzgojne strategije za Simentalca Fleckvieha sa stajališta uzgojnih udruga

    Get PDF
    Simentalac Fleckvieh je najmnogovrsnija pasmina goveda u svijetu. Uzgojni programi moraju to uzeti u obzir i jamčiti najveću mjeru pouzdanosti. To dozvoljavaju današnje tehničke mogućnosti. Jedan je uvjet suradnja svih zemalja u svijetu u ostvarivanju uzgojnih programa, što se već dokazala s drugim pasminama goveda u svijetu. Osobito se zemlje Simentalca Fleckvieha srednje, južne i istočne Europe moraju integrirati u ovu suradnju. Ako ustrajemo u radu i obratimo pozornost na prirodnu ravnotežu popularnost Simentalca Fleckvieha će i dalje rasti širom svijeta

    Multiscale modeling in micromagnetics : existence of solutions and numerical integration

    Get PDF
    Various applications ranging from spintronic devices, giant magnetoresistance sensors, and magnetic storage devices, include magnetic parts on very different length scales. Since the consideration of the Landau-Lifshitz-Gilbert equation (LLG) constrains the maximum element size to the exchange length within the media, it is numerically not attractive to simulate macroscopic parts with this approach. On the other hand, the magnetostatic Maxwell equations do not constrain the element size, but cannot describe the short-range exchange interaction accurately. A combination of both methods allows one to describe magnetic domains within the micromagnetic regime by use of LLG and also considers the macroscopic parts by a nonlinear material law using the Maxwell equations. In our work, we prove that under certain assumptions on the nonlinear material law, this multiscale version of LLG admits weak solutions. Our proof is constructive in the sense that we provide a linear-implicit numerical integrator for the multiscale model such that the numerically computable finite element solutions admit weak H1-convergence (at least for a subsequence) towards a weak solution

    Plasma proteome and metabolome characterization of an experimental human thyrotoxicosis model.

    Get PDF
    BACKGROUND: Determinations of thyrotropin (TSH) and free thyroxine (FT4) represent the gold standard in evaluation of thyroid function. To screen for novel peripheral biomarkers of thyroid function and to characterize FT4-associated physiological signatures in human plasma we used an untargeted OMICS approach in a thyrotoxicosis model. METHODS: A sample of 16 healthy young men were treated with levothyroxine for 8 weeks and plasma was sampled before the intake was started as well as at two points during treatment and after its completion, respectively. Mass spectrometry-derived metabolite and protein levels were related to FT4 serum concentrations using mixed-effect linear regression models in a robust setting. To compile a molecular signature discriminating between thyrotoxicosis and euthyroidism, a random forest was trained and validated in a two-stage cross-validation procedure. RESULTS: Despite the absence of obvious clinical symptoms, mass spectrometry analyses detected 65 metabolites and 63 proteins exhibiting significant associations with serum FT4. A subset of 15 molecules allowed a robust and good prediction of thyroid hormone function (AUC = 0.86) without prior information on TSH or FT4. Main FT4-associated signatures indicated increased resting energy expenditure, augmented defense against systemic oxidative stress, decreased lipoprotein particle levels, and increased levels of complement system proteins and coagulation factors. Further association findings question the reliability of kidney function assessment under hyperthyroid conditions and suggest a link between hyperthyroidism and cardiovascular diseases via increased dimethylarginine levels. CONCLUSION: Our results emphasize the power of untargeted OMICs approaches to detect novel pathways of thyroid hormone action. Furthermore, beyond TSH and FT4, we demonstrated the potential of such analyses to identify new molecular signatures for diagnosis and treatment of thyroid disorders. This study was registered at the German Clinical Trials Register (DRKS) [DRKS00011275] on the 16th of November 2016
    corecore