63 research outputs found

    Pulse Propagation in Resonant Tunneling

    Full text link
    We consider the analytically solvable model of a Gaussian pulse tunneling through a transmission resonance with a Breit-Wigner characteristic. The solution allows for the identification of two opposite pulse propagation regimes: if the resonance is broad compared to the energetic width of the incident Gaussian pulse a weakly deformed and slightly delayed transmitted Gaussian pulse is found. In the opposite limit of a narrow resonance the dying out of the transmitted pulse is dominated by the slow exponential decay characteristic of a quasi-bound state with a long life time (decaying state). We discuss the limitation of the achievable pulse transfer rate resulting from the slow decay. Finally, it is demonstrated that for narrow resonances a small second component is superimposed to the exponential decay which leads to characteristic interference oscillations.Comment: 6 pages, 4 figure

    Kondo effect in quantum dots

    Full text link
    We review mechanisms of low-temperature electronic transport through a quantum dot weakly coupled to two conducting leads. Transport in this case is dominated by electron-electron interaction. At temperatures moderately lower than the charging energy of the dot, the linear conductance is suppressed by the Coulomb blockade. Upon further lowering of the temperature, however, the conductance may start to increase again due to the Kondo effect. We concentrate on lateral quantum dot systems and discuss the conductance in a broad temperature range, which includes the Kondo regime

    Optical and EUV projection lithography: A computational view

    No full text
    This article reviews modeling approaches for optical and extreme ultraviolet (EUV) projection lithography. It explains the models for the rigorous computation of light diffraction from lithographic masks, a vector formulation of image formation in projection scanners and models for chemical amplified resists (CAR). Several examples demonstrate the application of these models and related computation techniques. It is shown how computational lithography supports innovative optics and material-driven resolution enhancement solutions but also how it helps to comprehend and master the lithographic process
    corecore