141 research outputs found

    New Applications of Electrochemically Produced Porous Semiconductors and Nanowire Arrays

    Get PDF
    The growing demand for electro mobility together with advancing concepts for renewable energy as primary power sources requires sophisticated methods of energy storage. In this work, we present a Li ion battery based on Si nanowires, which can be produced reliable and cheaply and which shows superior properties, such as a largely increased capacity and cycle stability. Sophisticated methods based on electrochemical pore etching allow to produce optimized regular arrays of nanowires, which can be stabilized by intrinsic cross-links, which serve to avoid unwanted stiction effects and allow easy processing

    Luminescence of GaN nanocolumns obtained by photon-assisted anodic etching

    Full text link
    GaN nanocolumns with transverse dimensions of about 50 nm were obtained by illumination-assisted anodic etching of epilayers grown by metalorganic chemical vapor deposition on sapphire substrates. The photoluminescence spectroscopy characterization shows that the as-grown bulk GaN layers suffer from compressive biaxial strain of 0.5 GPa. The majority of nanocolumns are fully relaxed from strain, and the room-temperature luminescence is free excitonic. The high quality of the columnar nanostructures evidenced by the enhanced intensity of the exciton luminescence and by the decrease of the yellow luminescence is explained by the peculiarities of the anodic etching processing. © 2003 American Institute of Physics.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/69916/2/APPLAB-83-8-1551-1.pd

    Porous silicon formation and electropolishing

    Full text link
    Electrochemical etching of silicon in hydrofluoride containing electrolytes leads to pore formation for low and to electropolishing for high applied current. The transition between pore formation and polishing is accompanied by a change of the valence of the electrochemical dissolution reaction. The local etching rate at the interface between the semiconductor and the electrolyte is determined by the local current density. We model the transport of reactants and reaction products and thus the current density in both, the semiconductor and the electrolyte. Basic features of the chemical reaction at the interface are summarized in law of mass action type boundary conditions for the transport equations at the interface. We investigate the linear stability of a planar and flat interface. Upon increasing the current density the stability flips either through a change of the valence of the dissolution reaction or by a nonlinear boundary conditions at the interface.Comment: 18 pages, 8 figure

    Fostering accessible online education using Galaxy as an e-learning platform

    Get PDF
    The COVID-19 pandemic is shifting teaching to an online setting all over the world. The Galaxy framework facilitates the online learning process and makes it accessible by providing a library of high-quality community-curated training materials, enabling easy access to data and tools, and facilitates sharing achievements and progress between students and instructors. By combining Galaxy with robust communication channels, effective instruction can be designed inclusively, regardless of the students’ environments

    Chemical composition of nanoporous layer formed by electrochemical etching of p-type GaAs

    Get PDF
    Abstract : We have performed a detailed characterization study of electrochemically etched p-type GaAs in a hydrofluoric acid-based electrolyte. The samples were investigated and characterized through cathodoluminescence (CL), X-ray diffraction (XRD), energy-dispersive X-ray spectroscopy (EDX), and X-ray photoelectron spectroscopy (XPS). It was found that after electrochemical etching, the porous layer showed a major decrease in the CL intensity and a change in chemical composition and in the crystalline phase. Contrary to previous reports on p-GaAs porosification, which stated that the formed layer is composed of porous GaAs, we report evidence that the porous layer is in fact mainly constituted of porous As2O3. Finally, a qualitative model is proposed to explain the porous As2O3 layer formation on p-GaAs substrate
    • …
    corecore