3 research outputs found

    Inflammatory Potential of Four Different Phases of Calcium Pyrophosphate Relies on NF-κB Activation and MAPK Pathways

    Get PDF
    Background: Calcium pyrophosphate (CPP) microcrystal deposition is associated with wide clinical phenotypes, including acute and chronic arthritis, that are interleukin 1β (IL-1β)-driven. Two CPP microcrystals, namely monoclinic and triclinic CPP dihydrates (m- and t-CPPD), have been identified in human tissues in different proportions according to clinical features. m-CPP tetrahydrate beta (m-CPPTβ) and amorphous CPP (a-CPP) phases are considered as m- and t-CPPD crystal precursors in vitro.Objectives: We aimed to decipher the inflammatory properties of the three crystalline phases and one amorphous CPP phase and the intracellular pathways involved.Methods: The four synthesized CPP phases and monosodium urate crystals (MSU, as a control) were used in vitro to stimulate the human monocytic leukemia THP-1 cell line or bone marrow-derived macrophages (BMDM) isolated from WT or NLRP3 KO mice. The gene expression of pro- and anti-inflammatory cytokines was evaluated by quantitative PCR; IL-1β, IL-6 and IL-8 production by ELISA; and mitogen-activated protein kinase (MAPK) activation by immunoblot analysis. NF-κB activation was determined in THP-1 cells containing a reporter plasmid. In vivo, the inflammatory potential of CPP phases was assessed with the murine air pouch model via cell analysis and production of IL-1β and CXCL1 in the exudate. The role of NF-κB was determined by a pharmacological approach, both in vivo and in vitro.Results:In vitro, IL-1β production induced by m- and t-CPPD and m-CPPTβ crystals was NLRP3 inflammasome dependent. m-CPPD crystals were the most inflammatory by inducing a faster and higher production and gene expression of IL-1β, IL-6, and IL-8 than t-CPPD, m-CPPTβ and MSU crystals. The a-CPP phase did not show an inflammatory property. Accordingly, m-CPPD crystals led to stronger activation of NF-κB, p38, extracellular signal-regulated kinase 1/2 (ERK1/2) and c-Jun N-terminal kinase (JNK) MAPKs. Inhibition of NF-κB completely abrogated IL-1β and IL-8 synthesis and secretion induced by all CPP crystals. Also, inhibition of JNK and ERK1/2 MAPKs decreased both IL-1β secretion and NF-κB activation induced by CPP crystals. In vivo, IL-1β and CXCL1 production and neutrophil infiltration induced by m-CPPD crystals were greatly decreased by NF-κB inhibitor treatment.Conclusion: Our results suggest that the inflammatory potential of different CPP crystals relies on their ability to activate the MAPK-dependent NF-κB pathway. Studies are ongoing to investigate the underlying mechanisms

    Galectin 3 Deficiency Alters Chondrocyte Primary Cilium Formation and Exacerbates Cartilage Destruction via Mitochondrial Apoptosis

    No full text
    International audienceMechanical overload and aging are the main risk factors of osteoarthritis (OA). Galectin 3 (GAL3) is important in the formation of primary cilia, organelles that are able to sense mechanical stress. The objectives were to evaluate the role of GAL3 in chondrocyte primary cilium formation and in OA in mice. Chondrocyte primary cilium was detected in vitro by confocal microscopy. OA was induced by aging and partial meniscectomy of wild-type (WT) and Gal3-null 129SvEV mice (Gal3 −/−). Primary chondrocytes were isolated from joints of newborn mice. Chondrocyte apoptosis was assessed by Terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL), caspase 3 activity and cytochrome c release. Gene expression was assessed by qRT-PCR. GAL3 was localized at the basal body of the chondrocyte primary cilium. Primary cilia of Gal3 −/− chondrocytes were frequently abnormal and misshapen. Deletion of Gal3 triggered premature OA during aging and exacerbated joint instability-induced OA. In both aging and surgery-induced OA cartilage, levels of chondrocyte catabolism and hypertrophy markers and apoptosis were more severe in Gal3 −/− than WT samples. In vitro, Gal3 knockout favored chondrocyte apoptosis via the mitochondrial pathway. GAL3 is a key regulator of cartilage homeostasis and chondrocyte primary cilium formation in mice. Gal3 deletion promotes OA development

    NADPH oxidase 4 deficiency attenuates experimental osteoarthritis in mice

    No full text
    Objective: Low-grade inflammation plays a pivotal role in osteoarthritis (OA) through exposure to reactive oxygen species (ROS). In chondrocytes, NADPH oxidase 4 (NOX4) is one of the major ROS producers. In this study, we evaluated the role of NOX4 on joint homoeostasis after destabilisation of the medial meniscus (DMM) in mice. Methods: Experimental OA was simulated on cartilage explants using interleukin-1β (IL-1β) and induced by DMM in wild-type (WT) and NOX4 knockout (NOX4-/-) mice. We evaluated NOX4 expression, inflammation, cartilage metabolism and oxidative stress by immunohistochemistry. Bone phenotype was also determined by micro-CT and histomorphometry. Results: Whole body NOX4 deletion attenuated experimental OA in mice, with a significant reduction of the OARSI score at 8 weeks. DMM increased total subchondral bone plate (SB.Th), epiphysial trabecular thicknesses (Tb.Th) and bone volume fraction (BV/TV) in both NOX4-/-and wild-type (WT) mice. Interestingly, DDM decreased total connectivity density (Conn.Dens) and increased medial BV/TV and Tb.Th only in WT mice. Ex vivo, NOX4 deficiency increased aggrecan (AGG) expression and decreased matrix metalloproteinase 13 (MMP13) and collagen type I (COL1) expression. IL-1β increased NOX4 and 8-hydroxy-2'-deoxyguanosine (8-OHdG) expression in WT cartilage explants but not in NOX4-/-. In vivo, absence of NOX4 increased anabolism and decreased catabolism after DMM. Finally, NOX4 deletion decreased synovitis score, 8-OHdG and F4/80 staining following DMM. Conclusion: NOX4 deficiency restores cartilage homoeostasis, inhibits oxidative stress, inflammation and delays OA progression after DMM in mice. These findings suggest that NOX4 represent a potential target to counteract for OA treatment.</p
    corecore