12 research outputs found

    From widespread faulting to localised rifting: Evidence from K-Ar fault gouge dates from the Norwegian North Sea rift shoulder

    Get PDF
    Although seismic and stratigraphic well information put tight constraints on rift basin evolution, eroded rift shoulders commonly expose polydeformed prerift basement whose deformation history may be difficult to constrain. In this work, we apply K-Ar dating of fault gouge samples from 18 faults to explore the brittle deformation of the well-exposed eastern rift margin to the northern North Sea rift. We find evidence of clay gouge formation since the Late Devonian, with distinct Permian and Jurassic fault activity peaks that closely match early stages of the two well-established North Sea rift phases. A marked decay in fault density away from the rift margin confirms a close relationship between rifting and onshore faulting. The results show that initial rift-related extension affected a much wider area than the resulting offshore rift. Hence our data support a rift model where strain is initially distributed over a several 100 km wide region, as a prelude to the development of the ~150–200 km wide Permo-Triassic northern North Sea rift as defined by large marginal faults. Towards the end of the second rift phase, strain localises even more strongly to the 25–50 km wide Viking Graben. Interestingly, a period of early widespread extension is seen for both phases of North Sea rifting and may be a general characteristic of continental rifting. The documented prerift faulting and fracturing of the basement since the Devonian weakened the basement and probably facilitated the widespread initial extension that subsequently localised to form the northern North Sea rift, with further localisation to its relatively narrow central part (Viking Graben).publishedVersio

    Syn‐rift sediment gravity flow deposition on a Late Jurassic fault‐terraced slope, northern North Sea

    Get PDF
    Structurally controlled bathymetry in rifts has a significant influence on sediment routing pathways and depositional architecture of sediment gravity flow deposits. In contrast to rift segments characterized by crustal-scale half-grabens, the tectono-stratigraphic evolution of deep-water rift domains characterised by distributed faulting on narrow fault terraces has received little attention. We use 3D broadband seismic data, calibrated by boreholes, from the Lomre and Uer terraces in the northern North Sea rift to investigate Late Jurassic syn-rift sediment gravity flow systems on fault-terraced slopes. The sediment gravity flow fairways were sourced from hinterland drainages via basin margin deltaic systems on the Horda Platform to the southeast. The deep-water sedimentary systems evolve from initial, widespread submarine channelized lobe complexes, through submarine channels, to incised submarine canyons. This progressive confinement of the sediment gravity flow system was concomitant with progressive localization of strain onto the main terrace-bounding faults. Although the normal fault network on the terraces has local impact on deep-water sediment transport and the architecture of gravity flow deposits, it is the regional basin margin to rift axis gradient that dominantly controls deep-water sediment routing. Furthermore, the gravity flow deposits on the Lomre and Uer terraces were predominantly sourced by rift margin deltaic systems, not from erosion of local uplifted footwall crests, emphasising the significance of hinterland catchments in the development of volumetrically significant deep-water syn-rift depositional systems

    Pre‐breakup extension in the northern North Sea defined by complex strain partitioning and heterogeneous extension rates

    Get PDF
    The early stages of continental rifting are accommodated by the growth of upper‐crustal normal fault systems that are distributed relatively evenly across the rift width. Numerous fault systems define fault arrays , the kinematics of which are poorly understood due to a lack of regional studies drawing on high‐quality subsurface data. Here we investigate the long‐term (~150 Myr) growth of a rift‐related fault array in the East Shetland Basin, northern North Sea, using a regionally extensive subsurface dataset comprising 2D and 3D seismic reflection surveys and 107 boreholes. We show that rift‐related strain during the pre‐Triassic‐to‐Middle Triassic was originally distributed across several sub‐basins. The Middle‐to‐Late Triassic saw a decrease in extension rate (~14 m/Myr) as strain localized in the western part of the basin. Early Jurassic strain initially migrated eastwards, before becoming more diffuse during the main, Middle‐to‐Late Jurassic rift phase. The highest extension rates (~89 m/Myr) corresponded with the main rift event in the East Shetland Basin, before focusing of strain within the rift axis and ultimate abandonment of the East Shetland Basin in the Early Cretaceous. We also demonstrate marked spatial variations in timing and magnitude of slip along‐strike of major fault systems during this protracted rift event. Our results imply that strain migration patterns and extension rates during the initial, pre‐breakup phase of continental rifting may be more complex than previously thought; this reflects temporal and spatial changes in both thermal and mechanical properties of the lithosphere, in addition to varying extension rates
    corecore