520 research outputs found
Dilepton production at HADES: theoretical predictions
Dileptons represent a unique probe for nuclear matter under extreme
conditions reached in heavy-ion collisions. They allow to study meson
properties, like mass and decay width, at various density and temperature
regimes. Present days models allow generally a good description of dilepton
spectra in ultra-relativistic heavy ion collision. For the energy regime of a
few GeV/nucleon, important discrepancies between theory and experiment, known
as the DLS puzzle, have been observed. Various models, including the one
developed by the T\"{u}bingen group, have tried to address this problem, but
have proven only partially successful. High precision spectra of dilepton
emission in heavy-ion reactions at 1 and 2 GeV/nucleon will be released in the
near future by the HADES Collaboration at GSI. Here we present the predictions
for dilepton spectra in C+C reactions at 1 and 2 GeV/nucleon and investigate up
to what degree possible scenarios for the in-medium modification of vector
mesons properties are accessible by the HADES experiment.Comment: 12 pages, 4 figures; submitted to Phys.Lett.
ÎČ1 integrins: zip codes and signaling relay for blood cells
At least eight of the twelve known members of the ÎČ1 integrin family are expressed on hematopoietic cells. Among these, the VCAM-1 receptor α4ÎČ1 has received most attention as a main factor mediating firm adhesion to the endothelium during blood cell extravasation. Therapeutic trials are ongoing into the use of antibodies and small molecule inhibitors to target this interaction and hence obtain anti-inflammatory effects. However, extravasation is only one possible process that is mediated by ÎČ1 integrins and there is evidence that they also mediate leukocyte retention and positioning in the tissue, lymphocyte activation and possibly migration within the interstitium. Genetic mouse models where integrins are selectively deleted on blood cells have been used to investigate these functions and further studies will be invaluable to critically evaluate therapeutic trials
Integrin beta 1 coordinates survival and morphogenesis of the embryonic lineage upon implantation and pluripotency transition
At implantation, the embryo establishes contacts with the maternal endometrium. This stage is associated with a high incidence of preclinical pregnancy losses. While the maternal factors underlying uterine receptivity have been investigated, the signals required by the embryo for successful peri-implantation development remain elusive. To explore these, we studied integrin beta 1 signaling, as embryos deficient for this receptor degenerate at implantation. We demonstrate that the coordinated action of pro-survival signals and localized actomyosin suppression via integrin beta 1 permits the development of the embryo beyond implantation. Failure of either process leads to developmental arrest and apoptosis. Pharmacological stimulation through fibroblast growth factor 2 (FGF2) and insulin-like growth factor 1 (IGF1), coupled with ROCK-mediated actomyosin inhibition, rescues the deficiency of integrin beta 1, promoting progression to post-implantation stages. Mutual exclusion between integrin beta 1 and actomyosin seems to be conserved in the human embryo, suggesting the possibility that these mechanisms could also underlie the transition of the human epiblast from pre- to post-implantation
The Architecture of Talin1 Reveals an Autoinhibition Mechanism
Focal adhesions (FAs) are protein machineries essential for cell adhesion, migration, and differentiation. Talin is an integrin-activating and tension-sensing FA component directly connecting integrins in the plasma membrane with the actomyosin cytoskeleton. To understand how talin function is regulated, we determined a cryoelectron microscopy (cryo-EM) structure of full-length talin1 revealing a two-way mode of autoinhibition. The actin-binding rod domains fold into a 15-nm globular arrangement that is interlocked by the integrin-binding FERM head. In turn d domains R9 and R12 shield access of the FERM domain to integrin and the phospholipid PIP2 at the membrane. This mechanism likely ensures synchronous inhibition of integrin, membrane, and cytoskeleton binding. We also demonstrate that compacted talin1 reversibly unfolds to an similar to 60-nm string-like conformation, revealing interaction sites for vinculin and actin. Our data explain how fast switching between active and inactive conformations of talin could regulate FA turnover, a process critical for cell adhesion and signaling
Probabilistic movement modeling for intention inference in human-robot interaction.
Intention inference can be an essential step toward efficient humanrobot interaction. For this purpose, we propose the Intention-Driven Dynamics Model (IDDM) to probabilistically model the generative process of movements that are directed by the intention. The IDDM allows to infer the intention from observed movements using Bayes â theorem. The IDDM simultaneously finds a latent state representation of noisy and highdimensional observations, and models the intention-driven dynamics in the latent states. As most robotics applications are subject to real-time constraints, we develop an efficient online algorithm that allows for real-time intention inference. Two human-robot interaction scenarios, i.e., target prediction for robot table tennis and action recognition for interactive humanoid robots, are used to evaluate the performance of our inference algorithm. In both intention inference tasks, the proposed algorithm achieves substantial improvements over support vector machines and Gaussian processes.
Isometric embeddings into Heisenberg groups
We study isometric embeddings of a Euclidean space or a Heisenberg group into a higher dimensional Heisenberg group, where both the source and target space are equipped with an arbitrary left-invariant homogeneous distance that is not necessarily sub-Riemannian. We show that if all infinite geodesics in the target are straight lines, then such an embedding must be a homogeneous homomorphism. We discuss a necessary and certain sufficient conditions for the target space to have this âgeodesic linearity propertyâ, and we provide various examples
- âŠ