6 research outputs found

    Characterization of monomeric and soluble aggregated Aβ in Down's syndrome and Alzheimer's disease brains

    Get PDF
    The major characteristics of Alzheimer's disease (AD) are amyloid plaques, consisting of aggregated beta amyloid (Aβ) peptides, together with tau pathology (tangles, neuropil treads and dystrophic neurites surrounding the plaques), in the brain. Down's syndrome (DS) individuals are at increased risk to develop AD-type pathology; most DS individuals have developed substantial pathology already at the age of 40. DS individuals have an extra copy of chromosome 21, harbouring the amyloid precursor protein gene (APP). Our aim was to investigate the Aβ peptide pattern in DS and AD brains to investigate differences in their amyloid deposition and aggregation, respectively. Cortical tissue from patients with DS (with amyloid pathology), sporadic AD and controls were homogenized and fractionated into TBS (water soluble) and formic acid (water insoluble) fractions. Immunoprecipitation (IP) was performed using a variety of antibodies targeting different Aβ species including oligomeric Aβ. Mass spectrometry was then used to evaluate the presence of Aβ species in the different patient groups. A large number of Aβ peptides were identified including Aβ1-X, 2-X, 3-X, 4-X, 5-X, 11-X, and Aβ peptides extended N terminally of the BACE1 cleavage site and ending at amino 15 in the Aβ sequence APP/Aβ(-X to 15), as well as peptides post-translationally modified by pyroglutamate formation. Most Aβ peptides had higher abundance in AD and DS compared to controls, except the APP/Aβ(-X to 15) peptides which were most abundant in DS followed by controls and AD. Furthermore, the abundancies of AβX-40 and AβX-34 were increased in DS compared with AD. Aβ1-40, Aβ1-42, and Aβ4-42 were identified as the main constitutes of protofibrils (IP'd using mAb158) and higher relative Aβ1-42 signals were obtained compared with samples IP'd with 6E10 + 4G8, indicating that the protofibrils/oligomers were enriched with peptides ending at amino acid 42. All Aβ peptides found in AD were also present in DS indicating similar pathways of Aβ peptide production, degradation and accumulation, except for APP/Aβ(-X to 15). Likewise, the Aβ peptides forming protofibrils/oligomers in both AD and DS were similar, implying the possibility that treatment with clinical benefit in sporadic AD might also be beneficial for subjects with DS

    Alpha-Synuclein Protofibrils in Cerebrospinal Fluid: A Potential Biomarker for Parkinson's Disease

    No full text
    BACKGROUND: Currently, there is no established biomarker for Parkinson's disease (PD) and easily accessible biomarkers are crucial for developing disease-modifying treatments. OBJECTIVE: To develop a novel method to quantify cerebrospinal fluid (CSF) levels of α-synuclein protofibrils (α-syn PF) and apply it to clinical cohorts of patients with PD and atypical parkinsonian disorders. METHODS: A cohort composed of 49 patients with PD, 12 with corticobasal degeneration (CBD), 22 with progressive supranuclear palsy, and 33 controls, that visited the memory clinic but had no biomarker signs of Alzheimer's disease (AD, tau530 pg/mL, and phosphorylated tau (p-tau)<60 pg/mL) was used in this study. The CSF samples were analyzed with the Single molecule array (Simoa) technology. Total α-synuclein (α-syn) levels were analyzed with a commercial ELISA-kit. RESULTS: The assay is specific to α-syn PF, with no cross-reactivity to monomeric α-syn, or the β- and γ-synuclein variants. CSF α-syn PF levels were increased in PD compared with controls (62.1 and 40.4 pg/mL, respectively, p = 0.03), and CBD (62.1 and 34.2 pg/mL, respectively, p = 0.02). The accuracy of predicting PD using α-syn PF is significantly different from controls (area under the curve 0.68, p = 0.0097) with a sensitivity of 62.8% and specificity of 67.7%. Levels of total α-syn were significantly different between the PD and CBD groups (p = 0.04). CONCLUSION: The developed method specifically quantifies α-syn PF in human CSF with increased concentrations in PD, but with an overlap with asymptomatic elderly controls

    A zebrafish model of tauopathy allows in vivo imaging of neuronal cell death and drug evaluation.

    No full text
    Our aging society is confronted with a dramatic increase of patients suffering from tauopathies, which include Alzheimer disease and certain frontotemporal dementias. These disorders are characterized by typical neuropathological lesions including hyperphosphorylation and subsequent aggregation of TAU protein and neuronal cell death. Currently, no mechanism-based cures are available. We generated fluorescently labeled TAU transgenic zebrafish, which rapidly recapitulated key pathological features of tauopathies, including phosphorylation and conformational changes of human TAU protein, tangle formation, neuronal and behavioral disturbances, and cell death. Due to their optical transparency and small size, zebrafish larvae are well suited for both in vivo imaging and drug development. TAU-induced neuronal cell death was imaged by time-lapse microscopy in vivo. Furthermore, we used this zebrafish model to identify compounds targeting the TAU kinase glycogen synthase kinase 3(3 (GSK3 beta). We identified a newly developed highly active GSK3 beta inhibitor, AR-534, by rational drug design. AR-534 reduced TAU phosphorylation in TAU transgenic zebrafish. This transgenic zebrafish model may become a valuable tool for further studies of the neuropathology of dementia

    Reduction of brain stem pathology and transient amelioration of early cognitive symptoms in transgenic mice treated with a monoclonal antibody against α-synuclein oligomers/protofibrils

    No full text
    Immunotherapy against alpha-synuclein (α-syn) is a promising novel treatment strategy for Parkinson's disease (PD) and related α-synucleinopathies. We have previously shown that systemic treatment with the monoclonal oligomer/protofibril-selective antibody mAb47 targeting cytotoxic α-syn leads to reduced central nervous system levels of such species as well as an indication of reduced late-stage symptoms in aged (Thy-1)-h[A30P] α-syn transgenic mice.Here, we performed an early-onset long-term treatment study with this antibody to evaluate effects on brain pathology and behavioral outcomes in the same mouse model. Compared to the placebo group, the treatment strongly reduced phosphorylated α-syn (pS129 α-syn) pathology in the upper brain stem. Moreover, a preserved recognition memory and risk assessment behavior could be seen in antibody-treated mice at six months of age, even although these effects were no longer significant at eleven months of age. Importantly, no evidence of inflammatory responses or other potential toxic effects was seen with the treatment. Taken together, this study supports the strategy to target α-syn oligomers/protofibrils with monoclonal antibodies to counteract early symptoms and slow down the progression of PD and other α-synucleinopathies

    BACE1 inhibition induces a specific cerebrospinal fluid β-amyloid pattern that identifies drug effects in the central nervous system

    Get PDF
    BACE1 is a key enzyme for amyloid-β (Aβ) production, and an attractive therapeutic target in Alzheimer's disease (AD). Here we report that BACE1 inhibitors have distinct effects on neuronal Aβ metabolism, inducing a unique pattern of secreted Aβ peptides, analyzed in cell media from amyloid precursor protein (APP) transfected cells and in cerebrospinal fluid (CSF) from dogs by immunoprecipitation-mass spectrometry, using several different BACE1 inhibitors. Besides the expected reductions in Aβ1-40 and Aβ1-42, treatment also changed the relative levels of several other Aβ isoforms. In particular Aβ1-34 decreased, while Aβ5-40 increased, and these changes were more sensitive to BACE1 inhibition than the changes in Aβ1-40 and Aβ1-42. The effects on Aβ5-40 indicate the presence of a BACE1 independent pathway of APP degradation. The described CSF Aβ pattern may be used as a pharmacodynamic fingerprint to detect biochemical effects of BACE1-therapies in clinical trials, which might accelerate development of novel therapies

    Reflections on microfinance

    No full text
    corecore