16 research outputs found

    Histologia hepática e produção em tanques-rede de tilápia-do-nilo masculinizada hormonalmente ou não masculinizada

    Get PDF
    O objetivo deste trabalho foi avaliar o desempenho e a sanidade da estrutura hepática de tilápia-do-nilo, masculinizada hormonalmente ou não masculinizada, criada em tanques-rede com dois níveis proteicos. Tilápias-do-nilo da linhagem Tailandesa (total de 2.400), com peso médio inicial de 127 g, foram distribuídas em delineamento inteiramente casualizado, com quatro tratamentos, em arranjo fatorial 2×2, correspondente aos grupos de tilápias masculinizadas hormonalmente ou não masculinizadas e ao teor proteico na dieta de 28 ou 32% de proteína bruta, com três repetições. Após 115 dias de alimentação, não houve interação entre os fatores quanto a peso final, ganho de peso, conversão alimentar, comprimento final e sobrevivência. Não houve diferença entre os peixes masculinizados hormonalmente e os não masculinizados, quanto a peso final, ganho de peso e sobrevivência, o que mostra a possibilidade de sua produção em tanques-rede, sem a necessidade de masculinização hormonal. A proteína bruta a 32% na dieta possibita melhor desempenho para ambos os grupos. Alterações histológicas no fígado - como o incremento do volume das células, o desarranjo da disposição cordonal e o aumento de vesículas nos hepatócitos - são encontradas nos peixes masculinizados hormonalmente e são mais acentuadas nos peixes alimentados com 32% de proteína bruta na dieta

    Identification of candidate genome regions controlling disease resistance in Arachis

    Get PDF
    Background Worldwide, diseases are important reducers of peanut (Arachis hypogaea) yield. Sources of resistance against many diseases are available in cultivated peanut genotypes, although often not in farmer preferred varieties. Wild species generally harbor greater levels of resistance and even apparent immunity, although the linkage of agronomically un-adapted wild alleles with wild disease resistance genes is inevitable. Marker-assisted selection has the potential to facilitate the combination of both cultivated and wild resistance loci with agronomically adapted alleles. However, in peanut there is an almost complete lack of knowledge of the regions of the Arachis genome that control disease resistance. Results In this work we identified candidate genome regions that control disease resistance. For this we placed candidate disease resistance genes and QTLs against late leaf spot disease on the genetic map of the A-genome of Arachis, which is based on microsatellite markers and legume anchor markers. These marker types are transferable within the genus Arachis and to other legumes respectively, enabling this map to be aligned to other Arachis maps and to maps of other legume crops including those with sequenced genomes. In total, 34 sequence-confirmed candidate disease resistance genes and five QTLs were mapped. Conclusion Candidate genes and QTLs were distributed on all linkage groups except for the smallest, but the distribution was not even. Groupings of candidate genes and QTLs for late leaf spot resistance were apparent on the upper region of linkage group 4 and the lower region of linkage group 2, indicating that these regions are likely to control disease resistance

    Characterization of rust, early and late leaf spot resistance in wild and cultivated peanut germplasm Caracterização da resistência à ferrugem, mancha preta e mancha castanha em germoplasma silvestre e cultivado de amendoim

    Get PDF
    Groundnut (Arachis hypogaea) has an AB genome and is one of the most important oil crops in the world. The main constraints of crop management in Brazil are fungal diseases. Several species of the genus Arachis are resistant to pests and diseases. The objective of our experiments was to identify wild species belonging to the taxonomic section Arachis with either A or B (or " non-A" ) genomes that are resistant to early leaf spot (Cercospora arachidicola), late leaf spot (Cercosporidium personatum) and rust (Puccinia arachidis). For the identification of genotypes resistant to fungal diseases, bioassays with detached leaves were done in laboratory conditions, with artificial inoculation, a controlled temperature of 25ºC and a photoperiod of 10 h light/14 h dark, for 20-42 days, depending on the fungi species. Most of the accessions of wild species were more resistant than accessions of A. hypogaea for one, two or all three fungi species studied. Arachis monticola, considered to be a possible tetraploid ancestor or a derivative of A. hypogaea, was also more susceptible to Cercosporidium personatum and Puccinia arachidis, as compared to most of the wild species. Therefore, wild germplasm accessions of both genome types are available to be used for the introgression of resistance genes against three fungal diseases of peanut.<br>O amendoim (Arachis hypogaea) possui genoma AB e é uma das mais importantes culturas oleaginosas em todo o mundo. Os principais problemas da cultura no Brasil são as doenças fúngicas. Várias espécies do gênero Arachis são resistentes a pragas e doenças. Este trabalho visou a identificar espécies silvestres pertencentes à seção Arachis associadas aos genomas A ou B (ou " não-A" ) do amendoim que são resistentes à mancha castanha (Cercospora arachidicola), mancha preta (Cercosporidium personatum) e ferrugem (Puccinia arachidis). Para a identificação de genótipos resistentes a doenças fúngicas, bioensaios utilizando folhas destacadas foram realizados em condições de laboratório, com inoculação artificial, temperatura controlada de 25ºC e fotoperíodo de 10h luz/14h escuro, por 20-42 dias, de acordo com a espécie fúngica. A maioria dos acessos das espécies silvestres foram mais resistentes que os acessos de A. hypogaea para uma, duas ou todas as espécies fúngicas estudadas. Arachis monticola, considerada como o possível ancestral tetraplóide ou como um derivativo de A. hypogaea, também mostrou-se mais suscetível a Cercosporidium personatum e Puccinia arachidis, quando comparado à maioria das espécies silvestres. Portanto, acessos de germoplasma silvestre com genoma A ou B estão disponíveis para serem utilizados na introgressão de genes de resistência a doenças fúngicas no amendoim
    corecore