68 research outputs found

    Monocarboxylate transporter 4 (MCT4) and CD147 overexpression is associated with poor prognosis in prostate cancer

    Get PDF
    BACKGROUND. Monocarboxylate transporters (MCTs) are transmembrane proteins involved in the transport of monocarboxylates across the plasma membrane, which appear to play an important role in solid tumours, however the role of MCTs in prostate cancer is largely unknown.The aim of the present work was to evaluate the clinico-pathological value of monocarboxylate transporters (MCTs) expression, namely MCT1, MCT2 and MCT4, together with CD147 and gp70 as MCT1/4 and MCT2 chaperones, respectively, in prostate carcinoma. METHODS. Prostate tissues were obtained from 171 patients, who performed radical prostatectomy and 14 patients who performed cystoprostatectomy. Samples and clinico-pathological data were retrieved and organized into tissue microarray (TMAs) blocks. Protein expression was evaluated by immunohistochemistry in neoplastic (n= 171), adjacent non-neoplastic tissues (n= 135), PIN lesions (n=40) and normal prostatic tissue (n=14). Protein expression was correlated with patients' clinicopathologic characteristics. RESULTS. In the present study, a significant increase of MCT2 and MCT4 expression in the cytoplasm of tumour cells and a significant decrease in both MCT1 and CD147 expression in prostate tumour cells was observed when compared to normal tissue. All MCT isoforms and CD147 were expressed in PIN lesions. Importantly, for MCT2 and MCT4 the expression levels in PIN lesions were between normal and tumour tissue, which might indicate a role for these MCTs in the malignant transformation. Associations were found between MCT1, MCT4 and CD147 expressions and poor prognosis markers; importantly MCT4 and CD147 overexpression correlated with higher PSA levels, Gleason score and pT stage, as well as with perineural invasion and biochemical recurrence. CONCLUSIONS. Our data provides novel evidence for the involvement of MCTs in prostate cancer. According to our results, we consider that MCT2 should be further explored as tumour marker and both MCT4 and CD147 as markers of poor prognosis in prostate cancer.NPG, CP and VMG received fellowships from the Portuguese Foundation for Science and Technology (FCT), refs. SFRH/BD/61027/2009, SFRH/BPD/69479/ 2010 and SFRH/BI/33503/2008, respectively. This work was supported by the FCT grant ref. PTDC/SAU-FCF/104347/2008, under the scope of Programa Operacional Temático Factores de Competitividade” (COMPETE) of Quadro Comunitário de Apoio III and co-financed by Fundo Comunitário Europeu FEDER

    Role of monocarboxylate transporters in human cancers : state of the art

    Get PDF
    Monocarboxylate transporters (MCTs) belong to the SLC16 gene family, presently composed by 14 members. MCT1-MCT4 are proton symporters, which mediate the transmembrane transport of pyruvate, lactate and ketone bodies. The role of MCTs in cell homeostasis has been characterized in detail in normal tissues, however, their role in cancer is still far from understood. Most solid tumors are known to rely on glycolysis for energy production and this activity leads to production of important amounts of lactate, which are exported into the extracellular milieu, contributing to the acidic microenvironment. In this context, MCTs will play a dual role in the maintenance of the hyper-glycolytic acidresistant phenotype of cancer, allowing the maintenance of the high glycolytic rates by performing lactate efflux, and pH regulation by the co-transport of protons. Thus, they constitute attractive targets for cancer therapy, which have been little explored. Here we review the literature on the role of MCTs in solid tumors in different locations, such as colon, central nervous system, breast, lung, gynecologic tract, prostate, stomach, however, there are many conflicting results and in most cases there are no functional studies showing the dependence of the tumors on MCT expression and activity. Additional studies on MCT expression in other tumor types, confirmation of the results already published as well as additional functional studies are needed to deeply understand the role of MCTs in cancer maintenance and aggressiveness

    Molecular characterization of EGFR, PDGFRA and VEGFR2 in cervical adenosquamous carcinoma

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Adenosquamous carcinoma of the uterine cervix is an infrequent but aggressive subtype of cervical cancer. A better understanding of its biological behaviour is warranted to define more accurate prognosis and therapeutic targets. Currently, the blockage of receptor tyrosine kinase (RTKs) activity is an efficient therapeutic strategy for many different cancers. The objective of this study was to investigate EGFR, PDGFRA and VEGFR2 RTKs overexpression and activating gene mutations in a cohort of 30 adenosquamous carcinomas of the uterine cervix.</p> <p>Methods</p> <p>EGFR, PDGFRA and VEGFR2 immunohistochemistry was performed in all samples, followed by DNA isolation from the gross macroscopically dissection of the neoplastic area. Screening for <it>EGFR </it>(exons 18–21) and <it>PDGFRA </it>(exons 12, 14 and 18) mutations was done by PCR – single-strand conformational polymorphism (PCR-SSCP).</p> <p>Results</p> <p>Despite the presence of EGFR immunohistochemical positive reactions in 43% (13/30) of the samples, no <it>EGFR </it>activating mutations in the hotspot region (exons 18–21) were identified. A silent base substitution (CAG>CAA) in <it>EGFR </it>exon 20 at codon 787 (Q787Q) was found in 17 cases (56%). All PDGFRA immunohistochemical reactions were positive and consistently observed in the stromal component, staining fibroblasts and endothelial cells, as well as in the cytoplasm of malignant cells. No activating <it>PDGFRA </it>mutations were found, yet, several silent mutations were observed, such as a base substitution in exon 12 (CCA>CCG) at codon 567 (P567P) in 9 cases and in exon 18 (GTC>GTT) at codon 824 (V824V) in 4 cases. We also observed the presence of base substitutions in intron 14 (IVS14+3G>A and IVS14+49G>A) in two different cases, and in intron 18 (IVS18-50insA) in 4 cases. VEGFR2 positivity was observed in 22 of 30 cases (73.3%), and was significantly associated with lack of metastasis (<it>p </it>= 0.038).</p> <p>Conclusion</p> <p>This is the most extensive analysis of EGFR, PDGFRA and VEGFR2 in cervical adenosquamous carcinomas. Despite the absence of <it>EGFR </it>and <it>PDGFRA </it>activating mutations, the presence of overexpression of these three important therapeutic targets in a subset of cases may be important in predicting the sensitivity of adenosquamous carcinoma to specific anti-RTKs drugs.</p

    Sugarcane (Saccharum X officinarum): A Reference Study for the Regulation of Genetically Modified Cultivars in Brazil

    Get PDF
    Global interest in sugarcane has increased significantly in recent years due to its economic impact on sustainable energy production. Sugarcane breeding and better agronomic practices have contributed to a huge increase in sugarcane yield in the last 30 years. Additional increases in sugarcane yield are expected to result from the use of biotechnology tools in the near future. Genetically modified (GM) sugarcane that incorporates genes to increase resistance to biotic and abiotic stresses could play a major role in achieving this goal. However, to bring GM sugarcane to the market, it is necessary to follow a regulatory process that will evaluate the environmental and health impacts of this crop. The regulatory review process is usually accomplished through a comparison of the biology and composition of the GM cultivar and a non-GM counterpart. This review intends to provide information on non-GM sugarcane biology, genetics, breeding, agronomic management, processing, products and byproducts, as well as the current technologies used to develop GM sugarcane, with the aim of assisting regulators in the decision-making process regarding the commercial release of GM sugarcane cultivars
    • 

    corecore