859 research outputs found

    Comparison of Source Rock Geochemistry of Selected Rocks from the Schei Point Group and Ringnes Formation, Sverdrup Basin, Arctic Canada

    Get PDF
    Organic-rich from the Schei Point group (middle to late Triassic in age) and the Ringnes formation (late Jurassic) from the Sverdrup basin of the Canadian arctic archipelago have been geochemically evaluated for source rock characterization. Most samples from the Schei Point group are organic-rich (\u3e 2% TOC) and are considered as immature to mature oil-prone source rocks [kerogen types I, I-II (IIA) and II (IIA)]. These kerogen types contain abundant AOM1, AOM2 and alginite (Tasmanales, Nostocopsis, Leiosphaeridia, acritarch and dinoflagellate) with variable amounts of vitrinite, inertinite and exinite. Samples from the Ringnes formation contain dominant vitrinite and inertinite with partially oxidized AOM2, alginite and exinite forming mostly immature to mature condensate- and gas-prone source rocks [kerogen type II- III (IIB), III and a few II (IIA)]. Schei Point samples contain higher bitumen extract, saturate hydrocarbons and saturate/aromatic ratio than the Ringnes samples. Triterpane and sterane (dominant C30) distribution patterns and stable carbon isotope of bitumen and kerogen suggest that the analyzed samples from the Schei Point group are at the onset of oil generation and contain a mixture of sapropelic (algal) and minor terrestrial humic organic matter. Sterane carbon number distributions in the Ringnes formation also suggest a mixed algal and terrestrial organic matter type. There are some variations in hopane carbon number distributions, but these are apparently a function of thermal maturity rather than significant genetic differences among samples. Pyrolysis-gas chromatography/mass spectrometry of the two samples with similar maturity shows that the Schei Point sample generates three times more pyrolyzate than the Ringnes sample. Both samples have a dominant aliphatic character, although the Ringnes sample contains phenol and an aromaticity that is higher than that of the Schei Point sample

    Evaluation of Irrigation Water Application and Water Footprint of Major Agricultural and Horticultural Crops in the Markazi Province

    Get PDF
    IntroductionThe lack of water resources and increase in water demand are among the effective factors in the imbalance of the water resources in each region, and it is necessary to manage the proper use of available water resources in all activities. Water in the agricultural sector is one of the main factors of production, which should be conveyed by irrigation systems to the field level and made available for the plant roots. The necessity of macro-planning in water management and consumption imposes a comprehensive study of the amount of water consumed in the agricultural sector. Hence, this study was conducted with the objective of directly measuring and field-assessing the applied water, water productivity, and water footprint associated with the primary crops cultivated in Markazi Province, all managed by local farmers.MethodologyFor this purpose, 141 farms were selected in the major production areas of the main agricultural and horticultural crops of Markazi province with the coordination of the Agricultural Jihad centers. Then, the volume of water applied was measured without interfering in the irrigation scheduling of the users. To do so, first, the flow rate of the water source (canal, well, aqueduct or spring) was measured with a suitable device (flume and meter) in each of the selected farms. Then, by carefully monitoring the irrigation schedule of the farm, including the time of each irrigation, the number of irrigation throughout the year, as well as measuring the area under crop cultivation, the amount of water used by the crop was measured for each of the selected farms during the season. Also, based on the measured data, the amounts of blue, green and gray water footprints were determined for each of the examined crops. For this purpose, the blue, green and gray water footprints of different crops were calculated using the framework provided by Hoekstra and Chapagain (2008), and Hoekstra et al., (2011).Results and DiscussionThe irrigation intervals in the studied fields varied between 3 and 15 days with an average of 8 days and the average irrigation depth varied between 26.2 and 99 mm with an average of 67.8 mm in different crops. The results showed that the average volume of applied water for the studied crops in Markazi province was 10782 cubic meters per hectare. Also, the minimum and maximum amount of applied water for the evaluated crops was as follows: barley 3783 and 7232, alfalfa 10382 and 19797, beans 8280 and 17840, watermelon 5333 and 7174, walnuts 4420 and 29600, almonds 3850 and 13932, peaches 6872 and 17727, cherries 7050 and 14645, pomegranates 7156 and 20790, and grapes 5937 and 18168 cubic meters per hectare. Furthermore, the average value of irrigation water efficiency index and water footprint was as follows: barley 0.46 and 1642, alfalfa 0.92 and 700, bean 2924 and 0.24, watermelon 9.37 and 117, walnut 0.1 and 6706, almonds 0.16 and 6857, peach 2.48 and 242, cherries 0.73 and 875, pomegranates 1.33 and 636, and grapes 11.2 and 322. Based on the obtained results, the average total water footprint index was equal to 2102 cubic meters per ton. On average, the almond with a water footprint of 6857 cubic meters per ton had the highest share in allocating the water footprint in the crop production of the province. Whereas, the lowest water footprint related to the watermelon with a water footprint of 117 cubic meters per ton. he average values of the irrigation application efficiency index, irrigation water productivity, and water footprint for the examined farms were 72.5%, 1.79 kg/m3, and 2,102 m3/ton, respectively. In summary, the results indicate that the combined volume of irrigation water and beneficial rainfall in the irrigated fields within Markazi Province surpasses the actual water demand of the crops. This underscores the substantial impact of irrigation management on water utilization in the region.ConclusionOn average, the total volume of irrigation water and effective rainfall in irrigated fields and gardens in Markazi Province is more than the actual water requirement of the plant. In general, the results showed that irrigation management has a great impact on the amount of water use in the region. Based on the obtained results, considering that most of the farms and gardens receive water in an intermittent manner, in principle, no special attention is paid to the need for water and even effective rainfall, and the amount of water availability has the greatest impact on water consumption. Therefore, in order to reduce water consumption and improve water efficiency, it is suggested to manage the delivery of water to farmers during the season and according to their crop water needs. Also, the results of the water footprint can be used to improve water resource policies at the province level, land use studies, cropping pattern modification, and environmental sector policies

    ATM and Artemis promote homologous recombination of radiation-induced DNA double-strand breaks in G2

    Get PDF
    Homologous recombination (HR) and non‐homologous end joining (NHEJ) represent distinct pathways for repairing DNA double‐strand breaks (DSBs). Previous work implicated Artemis and ATM in an NHEJ‐dependent process, which repairs a defined subset of radiation‐induced DSBs in G1‐phase. Here, we show that in G2, as in G1, NHEJ represents the major DSB‐repair pathway whereas HR is only essential for repair of ∼15% of X‐ or γ‐ray‐induced DSBs. In addition to requiring the known HR proteins, Brca2, Rad51 and Rad54, repair of radiation‐induced DSBs by HR in G2 also involves Artemis and ATM suggesting that they promote NHEJ during G1 but HR during G2. The dependency for ATM for repair is relieved by depleting KAP‐1, providing evidence that HR in G2 repairs heterochromatin‐associated DSBs. Although not core HR proteins, ATM and Artemis are required for efficient formation of single‐stranded DNA and Rad51 foci at radiation‐induced DSBs in G2 with Artemis function requiring its endonuclease activity. We suggest that Artemis endonuclease removes lesions or secondary structures, which inhibit end resection and preclude the completion of HR or NHEJ

    A systematic review on treatment-related mucocutaneous reactions in COVID-19 patients

    Get PDF
    Most of drugs could have certain mucocutaneous reactions and COVID-19 drugs are not an exception that we focused. We systematically reviewed databases until August 15, 2020 and among initial 851 articles, 30 articles entered this study (20 case reports, 4 cohorts, and 6 controlled clinical trials). The types of reactions included AGEP, morbiliform drug eruptions, vasculitis, DRESS syndrome, urticarial vasculitis, and so on. The treatments have been used before side effects occur, included: antimalarial, anti-viral, antibiotics, tocilizumab, enoxaparin and and so on. In pandemic, we found 0.004 to 4.15 of definite drug-induced mucocutaneous reactions. The interval between drug usage and the eruption varied about few hours to 1 month; tightly dependent to the type of drug and hydroxychloroqine seems to be the drug with highest mean interval. Antivirals, antimalarials, azithromycin, and tocilizumab are most responsive drugs for adverse drug reactions, but antivirals especially in combination with antimalarial drugs are in the first step. Types of skin reactions are usually morbilliform/exanthematous maculopapular rashes or urticarial eruptions, which mostly may manage by steroids during few days. In the setting of HCQ, specific reactions like AGEP should be considered. Lopinavir/ritonavir is the most prevalent used drug among antivirals with the highest skin adverse reaction; ribarivin and remdisivir also could induce cutaneous drug reactions but favipiravir has no or less adverse effects. Logically the rate of dermatologic adverse effects among anivirals may relate to their frequency of usage. Rarely, potentially life-threatening reactions may occur. Better management strategies could achieve by knowing more about drug-induced mucocutaneous presentations of COVID-19. © 2020 Wiley Periodicals LLC

    Stem cell-based approach for the treatment of Parkinson's disease

    Get PDF
    Parkinson's disease (PD) is the second most common neurodegenerative brain disorder which is around 1.5 times more common in men than in women. Currently, drug medications, surgery, and lifestyle changes are common approaches to PD, while all of them focused on reducing the symptoms. Therefore, regenerative medicine based on stem cell (SC) therapies has raised a promising hope. Various types of SCs have been used in basic and experimental studies relevant to PD, including embryonic pluripotential stem cells, mesenchymal (MSCs) and induced pluripotent SCs (iPSCs). MSCs have several advantages over other counterparts. They are easily accessible which can be obtained from various tissues such as bone marrow, adipose tissue, peripheral blood, etc. with avoiding ethical problems. Therefore, MSCs is attractive clinically because there are no related ethical and immunological concerns . Further studies are needed to answer some crucial questions about the different issues in SC therapy. Accordingly, SC-based therapy for PD also needed more complementary evaluation in both basic and clinical study areas

    Clinical Grade Human Adipose Tissue-Derived Mesenchymal Stem Cell Banking

    Get PDF
    In this study, our aim was to produce a generation of GMP-grade adipose tissue-derived mesenchymal stem cells for clinical applications. According to our results, we fulfill to establish consistent and also reproducible current good manufacturing practice (cGMP) compliant adipose tissue-derived mesenchymal stem cells from five female donors. The isolated cells were cultured in DMEM supplemented with 10 fetal bovine serum and characterized by standard methods. Moreover, karyotyping was performed to evaluate chromosomal stability. Mean of donors' age was 47.6 ± 8.29 year, mean of cell viability was 95.6 ± 1.51, and cell count was between 9�106 and 14�106 per microliter with the mean of 12.2�106 ± 2863564.21 per microliter. The main aim of this project was demonstrating the feasibility of cGMP-compliant and clinical grade adipose tissue-derived mesenchymal stem cells preparation and banking for clinical cell transplantation trials

    MicroRNA-based linkage between aging and cancer: From epigenetics view point

    Get PDF
    Ageing is a complex process and a broad spectrum of physical, psychological, and social changes over time. Accompanying diseases and disabilities, which can interfere with cancer treatment and recovery, occur in old ages. MicroRNAs (miRNAs) are a set of small non-coding RNAs, which have considerable roles in post-transcriptional regulation at gene expression level. In this review, we attempted to summarize the current knowledge of miRNAs functions in ageing, with mainly focuses on malignancies and all underlying genetic, molecular and epigenetics mechanisms. The evidences indicated the complex and dynamic nature of miRNA-based linkage of ageing and cancer at genomics and epigenomics levels which might be generally crucial for understanding the mechanisms of age-related cancer and ageing. Recently in the field of cancer and ageing, scientists claimed that uric acid can be used to regulate reactive oxygen species (ROS), leading to cancer and ageing prevention; these findings highlight the role of miRNA-based inhibition of the SLC2A9 antioxidant pathway in cancer, as a novel way to kill malignant cells, while a patient is fighting with cancer

    Fracture Propagation Driven by Fluid Outflow from a Low-permeability Aquifer

    Full text link
    Deep saline aquifers are promising geological reservoirs for CO2 sequestration if they do not leak. The absence of leakage is provided by the caprock integrity. However, CO2 injection operations may change the geomechanical stresses and cause fracturing of the caprock. We present a model for the propagation of a fracture in the caprock driven by the outflow of fluid from a low-permeability aquifer. We show that to describe the fracture propagation, it is necessary to solve the pressure diffusion problem in the aquifer. We solve the problem numerically for the two-dimensional domain and show that, after a relatively short time, the solution is close to that of one-dimensional problem, which can be solved analytically. We use the relations derived in the hydraulic fracture literature to relate the the width of the fracture to its length and the flux into it, which allows us to obtain an analytical expression for the fracture length as a function of time. Using these results we predict the propagation of a hypothetical fracture at the In Salah CO2 injection site to be as fast as a typical hydraulic fracture. We also show that the hydrostatic and geostatic effects cause the increase of the driving force for the fracture propagation and, therefore, our solution serves as an estimate from below. Numerical estimates show that if a fracture appears, it is likely that it will become a pathway for CO2 leakage.Comment: 21 page
    corecore