16,041 research outputs found
A model for the Globular Cluster extreme anomalies
In spite of the efforts made in the latest years, still there is no
comprehensive explanation for the chemical anomalies of globular cluster stars.
Among these, the most striking is oxygen depletion, which reaches values down
to [O/Fe]~-0.4 in most clusters, but in M13 it goes down to less than [O/Fe]~ -
1. In this work we suggest that the anomalies are due to the super position of
two different events: 1) PRIMORDIAL SELF-ENRICHMENT: this is asked to explain
the oxygen depletion down to a minimum value [O/Fe]~ -0.4; 2) EXTRA MIXING IN A
FRACTION OF THE STARS ALREADY BORN WITH ANOMALOUS COMPOSITION: these objects,
starting with already low [O/Fe], will reduce the oxygen abundance down to the
most extreme values. Contrary to other models that invoke extra mixing to
explain the chemical anomalies, we suggest that it is active only if there is a
fraction of the stars in which the primordial composition is not only oxygen
depleted, but also extremely helium rich (Y~ 0.4), as found in a few GCs from
their main sequence multiplicity. We propose that the rotational evolution (and
an associated extra mixing) of extremely helium rich stars may be affected by
the fact that they develop a very small or non existent molecular weight
barrier during the evolution. We show that extra mixing in these stars, having
initial chemistry that has already been CNO processed, affects mainly the
oxygen abundance, and to a much smaller extent if affects the sodium abundance.
The model also predicts a large fluorine depletion concomitant with the oxygen
depletion, and a further enhancement of the surface helium abundance, which
reaches values close to Y=0.5 in the computed models. We stress that, in this
tentative explanation, those stars that are primordially O--depleted, but ARE
NOT extremely helium rich do not suffer deep extra mixing.Comment: 12 pages, 8 figures and 5 tables, accepted for publication in MNRA
SR-FTiR microscopy and FTIR imaging in the earth sciences
During the last decades, several books have been devoted to the application
of spectroscopic methods in mineralogy. Several short courses and meetings have
addressed particular aspects of spectroscopy, such as the analysis of hydrous
components in minerals and Earth materials. In these books, complete treatment
of the infrared theory and practical aspects of instrumentation and methods,
along with an exhaustive list of references, can be found. The present chapter
is intended to cover those aspects of infrared spectroscopy that have been
developed in the past decade and are not included in earlier reviews such as
Volume 18 of Reviews in Mineralogy. These new topics involve primarily: (1) the
use of synchrotron radiation (SR), which, although not a routine method, is now
rather extensively applied in infrared studies, in particular those requiring
ultimate spatial and time resolution and the analysis of extremely small
samples (a few tens of micrometers); (2) the development of imaging techniques
also for foreseen time resolved studies of geo-mineralogical processes and
environmental studies.Comment: 36 pages, 24 figures - Reviews in Mineralogy & Geochemistry - Vol. 78
(2013) in pres
Modelling the closest double degenerate system RXJ0806.3+1527 and its decreasing period
In the hypothesis that the 5.4m binary RXJ0806.3+1527 consists of a low mass
helium white dwarf (donor) transferring mass towards its more massive white
dwarf companion (primary), we consider as possible donors white dwarfs which
are the result of common envelope evolution occurring when the helium core mass
of the progenitor giant was still very small (~ 0.2Msun), so that they are
surrounded by a quite massive hydrogen envelope (~1/100Msun or larger), and
live for a very long time supported by proton--proton burning. Mass transfer
from such low mass white dwarfs very probably starts during the hydrogen
burning stage, and the donor structure will remain dominated by the burning
shell until it loses all the hydrogen envelope and begins transferring helium.
We model mass transfer from these low mass white dwarfs, and show that the
radius of the donor decreases while they shed the hydrogen envelope. This
radius behavior, which is due to the fact that the white dwarf is not fully
degenerate, has two important consequences on the evolution of the binary: 1)
the orbital period decreases, with a timescale consistent with the period
decrease of the binary RXJ0806.3+1527; 2) the mass transfer rate is a factor of
about 10 smaller than from a fully degenerate white dwarf, easing the problem
connected with the small X-ray luminosity of this object. The possibility that
such evolution describes the system RXJ0806.3+1527 is also consistent with the
possible presence of hydrogen in the optical spectrum of the star, whose
confirmation would become a test of the model.Comment: 13 pages, 4 figures, accepted for publication on ApJ, main journa
The oxygen vs. sodium (anti)correlation(s) in omega Cen
Recent exam of large samples of omega Cen giants shows that it shares with
mono-metallic globular clusters the presence of the sodium versus oxygen
anticorrelation, within each subset of stars with iron content in the range
-1.9<~[Fe/H]<~-1.3. These findings suggest that, while the second generation
formation history in omega Cen is more complex than that of mono-metallic
clusters, it shares some key steps with those simpler cluster. In addition, the
giants in the range -1.3<[Fe/H]<~-0.7 show a direct O--Na correlation, at
moderately low O, but Na up to 20 times solar. These peculiar Na abundances are
not shared by stars in other environments often assumed to undergo a similar
chemical evolution, such as in the field of the Sagittarius dwarf galaxy. These
O and Na abundances match well the yields of the massive asymptotic giant
branch stars (AGB) in the same range of metallicity, suggesting that the stars
at [Fe/H]>-1.3 in omega Cen are likely to have formed directly from the pure
ejecta of massive AGBs of the same metallicities. This is possible if the
massive AGBs of [Fe/H]>-1.3 in the progenitor system evolve when all the
pristine gas surrounding the cluster has been exhausted by the previous star
formation events, or the proto--cluster interaction with the Galaxy caused the
loss of a significant fraction of its mass, or of its dark matter halo, and the
supernova ejecta have been able to clear the gas out of the system. The absence
of dilution in the metal richer populations lends further support to a scenario
of the formation of second generation stars in cooling flows from massive AGB
progenitors. We suggest that the entire formation of omega Cen took place in a
few 10^8yr, and discuss the problem of a prompt formation of s--process
elements.Comment: The Astrophysical Journal, in pres
- …