1,731,917 research outputs found

    The Green's function for the radial Schramm-Loewner evolution

    Full text link
    We prove the existence of the Green's function for radial SLE(k) for k<8. Unlike the chordal case where an explicit formula for the Green's function is known for all values of k<8, we give an explicit formula only for k=4. For other values of k, we give a formula in terms of an expectation with respect to SLE conditioned to go through a point.Comment: v1: 16 pages, 0 figure

    Mirror Fermions in Noncommutative Geometry

    Get PDF
    In a recent paper we pointed out the presence of extra fermionic degrees of freedom in a chiral gauge theory based on Connes Noncommutative Geometry. Here we propose a mechanism which provides a high mass to these mirror states, so that they decouple from low energy physics.Comment: 7 pages, LaTe

    Indication for Light Sneutrinos and Gauginos from Precision Electroweak Data

    Get PDF
    The present Standard Model fit of precision data has a low confidence level, and is characterized by a few inconsistencies. We look for supersymmetric effects that could improve the agreement among the electroweak precision measurements and with the direct lower bound on the Higgs mass. We find that this is the case particularly if the 3.6 sigma discrepancy between sin^2 theta_eff from leptonic and hadronic asymmetries is finally settled more on the side of the leptonic ones. After the inclusion of all experimental constraints, our analysis selects light sneutrinos, with masses in the range 55-80 GeV, and charged sleptons with masses just above their experimental limit, possibly with additional effects from light gauginos. The phenomenological implications of this scenario are discussed.Comment: 17 pages LaTex, 9 figures, uses epsfi

    Solving the Constraints of General Relativity

    Get PDF
    I show in this letter that it is possible to solve some of the constraints of the SO(3)SO(3)-ADM formalism for general relativity by using an approach similar to the one introduced by Capovilla, Dell and Jacobson to solve the vector and scalar constraints in the Ashtekar variables framework. I discuss the advantages of using the ADM formalism and compare the result with similar proposals for different Hamiltonian formulations of general relativity.Comment: 8 pages, LATEX, no figures, Preprint CGPG-94/11-

    Shock waves in strongly interacting Fermi gas from time-dependent density functional calculations

    Full text link
    Motivated by a recent experiment [Phys. Rev. Lett. 106, 150401 (2011)] we simulate the collision between two clouds of cold Fermi gas at unitarity conditions by using an extended Thomas-Fermi density functional. At variance with the current interpretation of the experiments, where the role of viscosity is emphasized, we find that a quantitative agreement with the experimental observation of the dynamics of the cloud collisions is obtained within our superfluid effective hydrodynamics approach, where density variations during the collision are controlled by a purely dispersive quantum gradient term. We also suggest different initial conditions where dispersive density ripples can be detected with the available experimental spatial resolution.Comment: 5 pages, 4 figures, to be published in Phys. Rev.

    Tight-fill fruit packing /

    Get PDF
    C54

    Bethe-Peierls Approximation for Linear Monodisperse Polymers Re-examined

    Full text link
    Bethe-Peierls approximation, as it applies to the thermodynamics of polymer melts, is reviewed. We compare the computed configurational entropy of monodisperse linear polymer melt with Monte Carlo data available in literature. An estimation of the configurational contribution to the total liquid's Cp is presented. We also discuss the relation between Kauzmann paradox and polymer semiflexibility.Comment: 9 pages, 3 figure
    • …
    corecore