723 research outputs found

    Convergence analysis of a colocated finite volume scheme for the incompressible Navier-Stokes equations on general 2 or 3D meshes

    Full text link
    We study a colocated cell centered finite volume method for the approximation of the incompressible Navier-Stokes equations posed on a 2D or 3D finite domain. The discrete unknowns are the components of the velocity and the pressures, all of them colocated at the center of the cells of a unique mesh; hence the need for a stabilization technique, which we choose of the Brezzi-Pitk\"aranta type. The scheme features two essential properties: the discrete gradient is the transposed of the divergence terms and the discrete trilinear form associated to nonlinear advective terms vanishes on discrete divergence free velocity fields. As a consequence, the scheme is proved to be unconditionally stable and convergent for the Stokes problem, the steady and the transient Navier-Stokes equations. In this latter case, for a given sequence of approximate solutions computed on meshes the size of which tends to zero, we prove, up to a subsequence, the L2L^2-convergence of the components of the velocity, and, in the steady case, the weak L2L^2-convergence of the pressure. The proof relies on the study of space and time translates of approximate solutions, which allows the application of Kolmogorov's theorem. The limit of this subsequence is then shown to be a weak solution of the Navier-Stokes equations. Numerical examples are performed to obtain numerical convergence rates in both the linear and the nonlinear case.Comment: submitted September 0

    A Gradient Scheme for the Discretization of Richards Equation

    Get PDF
    International audienceWe propose a finite volume method on general meshes for the discretiza-tion of Richards equation, an elliptic-parabolic equation modeling groundwater flow. The diffusion term, which can be anisotropic and heterogeneous, is discretized in a gradient scheme framework, which can be applied to a wide range of unstruc-tured possibly non-matching polyhedral meshes in arbitrary space dimension. More precisely, we implement the SUSHI scheme which is also locally conservative. As is needed for Richards equation, the time discretization is fully implicit. We obtain a convergence result based upon energy-type estimates and the application of the Fréchet-Kolmogorov compactness theorem. We implement the scheme and present the results of a number of numerical tests

    Finite volume schemes and Lax-Wendroff consistency

    Get PDF
    We present a (partial) historical summary of the mathematical analysis of finite differences and finite volumes methods, paying a special attention to the Lax-Richtmyer and Lax-Wendroff theorems. We then state a Lax-Wendroff consistency result for convection operators on staggered grids (often used in fluid flow simulations), which illustrates a recent generalization of the flux consistency notion designed to cope with general discrete functions

    How much larger quantum correlations are than classical ones

    Full text link
    Considering as distance between two two-party correlations the minimum number of half local results one party must toggle in order to turn one correlation into the other, we show that the volume of the set of physically obtainable correlations in the Einstein-Podolsky-Rosen-Bell scenario is (3 pi/8)^2 = 1.388 larger than the volume of the set of correlations obtainable in local deterministic or probabilistic hidden-variable theories, but is only 3 pi^2/32 = 0.925 of the volume allowed by arbitrary causal (i.e., no-signaling) theories.Comment: REVTeX4, 6 page

    Optimal error estimates for non-conforming approximations of linear parabolic problems with minimal regularity

    Full text link
    We consider a general linear parabolic problem with extended time boundary conditions (including initial value problems and periodic ones), and approximate it by the implicit Euler scheme in time and the Gradient Discretisation method in space; the latter is in fact a class of methods that includes conforming and nonconforming finite elements, discontinuous Galerkin methods and several others. The main result is an error estimate which holds without supplementary regularity hypothesis on the solution. This result states that the approximation error has the same order as the sum of the interpolation error and the conformity error. The proof of this result relies on an inf-sup inequality in Hilbert spaces which can be used both in the continuous and the discrete frameworks. The error estimate result is illustrated by numerical examples with low regularity of the solution

    Piecewise linear transformation in diffusive flux discretization

    Full text link
    To ensure the discrete maximum principle or solution positivity in finite volume schemes, diffusive flux is sometimes discretized as a conical combination of finite differences. Such a combination may be impossible to construct along material discontinuities using only cell concentration values. This is often resolved by introducing auxiliary node, edge, or face concentration values that are explicitly interpolated from the surrounding cell concentrations. We propose to discretize the diffusive flux after applying a local piecewise linear coordinate transformation that effectively removes the discontinuities. The resulting scheme does not need any auxiliary concentrations and is therefore remarkably simpler, while being second-order accurate under the assumption that the structure of the domain is locally layered.Comment: 11 pages, 1 figures, preprint submitted to Journal of Computational Physic

    Baseline neutrophil-to-lymphocyte ratio as a predictive and prognostic biomarker in patients with metastatic castration-resistant prostate cancer treated with cabazitaxel versus abiraterone or enzalutamide in the CARD study

    Get PDF
    Abiraterona; Cabazitaxel; Factor pronósticoAbiraterona; Cabazitaxel; Factor pronòsticAbiraterone; Cabazitaxel; Prognostic factorBackground There is growing evidence that a high neutrophil-to-lymphocyte ratio (NLR) is associated with poor overall survival (OS) for patients with metastatic castration-resistant prostate cancer (mCRPC). In the CARD study (NCT02485691), cabazitaxel significantly improved radiographic progression-free survival (rPFS) and OS versus abiraterone or enzalutamide in patients with mCRPC previously treated with docetaxel and the alternative androgen-receptor-targeted agent (ARTA). Here, we investigated NLR as a biomarker. Patients and methods CARD was a multicenter, open-label study that randomized patients with mCRPC to receive cabazitaxel (25 mg/m2 every 3 weeks) versus abiraterone (1000 mg/day) or enzalutamide (160 mg/day). The relationships between baseline NLR [< versus ≥ median (3.38)] and rPFS, OS, time to prostate-specific antigen progression, and prostate-specific antigen response to cabazitaxel versus ARTA were evaluated using Kaplan–Meier estimates. Multivariable Cox regression with stepwise selection of covariates was used to investigate the prognostic association between baseline NLR and OS. Results The rPFS benefit with cabazitaxel versus ARTA was particularly marked in patients with high NLR {8.5 versus 2.8 months, respectively; hazard ratio (HR) 0.43 [95% confidence interval (CI) 0.27-0.67]; P < 0.0001}, compared with low NLR [7.5 versus 5.1 months, respectively; HR 0.69 (95% CI 0.45-1.06); P = 0.0860]. Higher NLR (continuous covariate, per 1 unit increase) independently associated with poor OS [HR 1.05 (95% CI 1.02-1.08); P = 0.0003]. For cabazitaxel, there was no OS difference between patients with high versus low NLR (15.3 versus 12.9 months, respectively; P = 0.7465). Patients receiving an ARTA with high NLR, however, had a worse OS versus those with low NLR (9.5 versus 13.3 months, respectively; P = 0.0608). Conclusions High baseline NLR predicts poor outcomes with an ARTA in patients with mCRPC previously treated with docetaxel and the alternative ARTA. Conversely, the activity of cabazitaxel is retained irrespective of NLR.This work was supported by Sanofi Genzyme (no grant number). The authors were responsible for all content and editorial decisions and received no honoraria for development of this manuscript
    • …
    corecore