120 research outputs found

    Developing Hyperpolarized 13C Spectroscopy and Imaging for Metabolic Studies in the Isolated Perfused Rat Heart

    Get PDF
    Hyperpolarized 13C magnetic resonance is a powerful tool for the study of cardiac metabolism. In this work, we have implemented protocols for the real-time hyperpolarized 13C investigation of Langendorff-perfused rat hearts using both non-selective non-localized spectroscopy and fast spectroscopic imaging. Following [1-13C] pyruvate infusion, we observed both catabolic and anaplerotic metabolic processes resulting in a number of metabolites, including bicarbonate, carbon dioxide, lactate, alanine and aspartate. Employing fast spectroscopic imaging, we were able to observe regional variations in pyruvate perfusion as well as in lactate and bicarbonate productio

    Extended Bloch-McConnell equations for mechanistic analysis of hyperpolarized 13C magnetic resonance experiments on enzyme systems

    Get PDF
    Abstract. We describe an approach to formulating the kinetic master equations of the time evolution of NMR signals in reacting (bio)chemical systems. Special focus is given to studies that employ signal enhancement (hyperpolarization) methods such as dissolution dynamic nuclear polarization (dDNP) and involving nuclear spin-bearing solutes that undergo reactions mediated by enzymes and membrane transport proteins. We extend the work given in a recent presentation on this topic to now include enzymes with two or more substrates and various enzyme reaction mechanisms as classified by Cleland. Using this approach, we can address some pressing questions in the field from a theoretical standpoint. For example, why does binding of a hyperpolarized substrate to an enzyme not cause an appreciable loss of the signal from the substrate or product? Why does the concentration of an unlabelled pool of substrate, for example 12C lactate, cause an increase in the rate of exchange of the 13C labelled pool? To what extent is the equilibrium position of the reaction perturbed during administration of the substrate? The formalism gives a full mechanistic understanding of the time courses derived and is of relevance to ongoing clinical trials using these techniques. </jats:p

    Off-target effects of SGLT2 blockers: empagliflozin does not inhibit Na+/H+ exchanger-1 or lower [Na+]i in the heart

    Get PDF
    Aims: Empagliflozin (EMPA) is a potent inhibitor of the renal sodium-glucose cotransporter 2 (SGLT2) and an effective treatment for type-2 diabetes. In patients with diabetes and heart failure, EMPA has cardioprotective effects independent of improved glycaemic control, despite SGLT2 not being expressed in the heart. A number of non-canonical mechanisms have been proposed to explain these cardiac effects, most notably an inhibitory action on cardiac Na+/H+ exchanger 1 (NHE1), causing a reduction in intracellular [Na+] ([Na+]i). However, at resting intracellular pH (pHi), NHE1 activity is very low and its pharmacological inhibition is not expected to meaningfully alter steady-state [Na+]i. We re-evaluate this putative EMPA target by measuring cardiac NHE1 activity. Methods and results: The effect of EMPA on NHE1 activity was tested in isolated rat ventricular cardiomyocytes from measurements of pHi recovery following an ammonium pre-pulse manoeuvre, using cSNARF1 fluorescence imaging. Whereas 10 µM cariporide produced near-complete inhibition, there was no evidence for NHE1 inhibition with EMPA treatment (1, 3, 10 or 30 µM). Intracellular acidification by acetate-superfusion evoked NHE1 activity and raised [Na+]i, reported by sodium binding benzofuran isophthalate (SBFI) fluorescence, but EMPA did not ablate this rise. EMPA (10 µM) also had no significant effect on the rate of cytoplasmic [Na+]i-rise upon superfusion of Na+-depleted cells with Na+-containing buffers. In Langendorff-perfused mouse, rat and guinea pig hearts, EMPA did not affect [Na+]i at baseline nor pHi recovery following acute acidosis, as measured by 23Na triple quantum filtered NMR and 31P NMR, respectively. Conclusions Our findings indicate that cardiac NHE1 activity is not inhibited by EMPA (or other SGLT2i’s) and EMPA has no effect on [Na+]i over a wide range of concentrations, including the therapeutic dose. Thus, the beneficial effects of SGLT2i’s in failing hearts should not be interpreted in terms of actions on myocardial NHE1 or intracellular [Na+]. Translational Perspective: Heart failure remains a huge clinical burden. Clinical trials of SGLT2 inhibitors in patients with diabetes and heart failure have reported highly significant cardiovascular benefit that appears independent of improved glycaemic control. As SGLT2 is not expressed in the heart, the mechanism by which SGLT2 inhibitors are cardioprotective remains unknown. Understanding this mechanism is clearly essential as the use of SGLT2 inhibitors in non-diabetics is increasing and a better understanding may allow refinement of therapeutic approaches in both HFpEF and HFrEF. One suggested mechanism that has received significant attention, inhibition of cardiac Na+/H+ exchanger, is investigated here

    Intracellular sodium elevation reprograms cardiac metabolism

    Get PDF
    Intracellular Na elevation in the heart is a hallmark of pathologies where both acute and chronic metabolic remodeling occurs. We assessed whether acute (75μM ouabain 100nM blebbistatin) and chronic myocardial Naiload (PLM3SA mouse) are causally linked to metabolic remodeling and whether the hypertrophied failing heart shares a common Na-mediated metabolic ‘fingerprint’. Control (PLMWT), transgenic (PLM3SA), ouabain treated and hypertrophied Langendorff-perfused mouse hearts were studied by 23Na, 31P, 13C NMR followed by 1H NMR metabolomic profiling. Elevated Nai leads to common adaptive metabolic alterations preceding energetic impairment: a switch from fatty acid to carbohydrate metabolism and changes in steady-state metabolite concentrations (glycolytic, anaplerotic, Krebs cycle intermediates). Inhibition of mitochondrial Na/Ca exchanger by CGP37157 ameliorated the metabolic changes. In silico modelling indicated altered metabolic fluxes (Krebs cycle, fatty acid, carbohydrate, amino acid metabolism). Prevention of Nai overload or inhibition of Na/Camitomay be a new approach to ameliorate metabolic dysregulation in heart failure

    Multiple quantum filtered <sup>23</sup>Na NMR in the Langendorff perfused mouse heart:Ratio of triple/double quantum filtered signals correlate with [Na]<sub>i</sub>

    Get PDF
    AbstractWe investigate the potential of multiple quantum filtered (MQF) 23Na NMR to probe intracellular [Na]i in the Langendorff perfused mouse heart. In the presence of Tm(DOTP) shift reagent the triple quantum filtered (TQF) signal originated largely from the intracellular sodium pool with a 32±6% contribution of the total TQF signal arising from extracellular sodium, whilst the rank 2 double-quantum filtered signal (DQF), acquired with a 54.7° flip-angle pulse, originated exclusively from the extracellular sodium pool. Given the different cellular origins of the 23Na MQF signals we propose that the TQF/DQF ratio can be used as a semi-quantitative measure of [Na]i in the mouse heart. We demonstrate a good correlation of this ratio with [Na]i measured with shift reagent at baseline and under conditions of elevated [Na]i. We compare the measurements of [Na]i using both shift reagent and TQF/DQF ratio in a cohort of wild type mouse hearts and in a transgenic PLM3SA mouse expressing a non-phosphorylatable form of phospholemman, showing a modest but measurable elevation of baseline [Na]i. MQF filtered 23Na NMR is a potentially useful tool for studying normal and pathophysiological changes in [Na]i, particularly in transgenic mouse models with altered Na regulation
    • …
    corecore