66 research outputs found

    Bright White-Light Emitting Manganese and Copper Co-Doped ZnSe Quantum Dots

    Get PDF
    Cataloged from PDF version of article.Doubly doped quantum dots with highly efficient (17 %) white-light emission (WLE) have been directly synthesized using a one-pot hot-injection technique (see picture). The generation of WLE was due to the judicious manipulation of the synthesis strategy for the co-doping of the host material-ZnSe quantum dots-with Mn and Cu. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

    Dual-color emitting quantum-dot-quantum-well CdSe-ZnS heteronanocrystals hybridized on InGaN/GaN light emitting diodes for high-quality white light generation

    Get PDF
    Cataloged from PDF version of article.We report white light generation by hybridizing green-red emitting (CdSe)ZnS/CdSe (core)shell/shell quantum-dot-quantum-well heteronanocrystals on blue InGaN/GaN light emitting diodes with the photometric properties of tristimulus coordinates (x,y)=(0.36,0.30), luminous efficacy of optical radiation LE=278 lm/W, correlated color temperature CCT=3929 K, and color-rendering index CRI=75.1. We present the photometric analysis and the quantum mechanical design of these dual-color emitting heteronanocrystals synthesized to achieve high-quality white light when hybridized on light emitting diodes. Using such multicolor emitting heteronanocrystals facilitates simple device implementation while providing good photometric properties. (C) 2008 American Institute of Physics

    Colloidal Nanocrystals Embedded in Macrocrystals: Robustness, Photostability, and Color Purity

    Get PDF
    Cataloged from PDF version of article.The incorporation of colloidal quantum dots (QDs) into ionic crystals of various salts (NaCl, KCl, KBr, etc.) is demonstrated. The resulting mixed crystals of various shapes and beautiful colors preserve the strong luminescence of the incorporated QDs. Moreover, the ionic salts appear to be very tight matrices, ensuring the protection of the QDs from the environment and as a result providing them with extraordinary high photo- and chemical stability. A prototype of a white light-emitting diode (WLED) with a color conversion layer consisting of this kind of mixed crystals is demonstrated. These materials may also find applications in nonlinear optics and as luminescence standards

    Hyperbolic metamaterials based on quantum-dot plasmon-resonator nanocomposites.

    Get PDF
    We theoretically demonstrate that nanocomposites made of colloidal semiconductor quantum dot monolayers placed between metal nanoparticle monolayers can function as multilayer hyperbolic metamaterials. Depending on the thickness of the spacer between the quantum dot and nanoparticle layers, the effective permittivity tensor of the nanocomposite is shown to become indefinite, resulting in increased photonic density of states and strong enhancement of quantum dot luminescence. This explains the results of recent experiments [T. Ozel et al., ACS Nano 5, 1328 (2011)] and confirms that hyperbolic metamaterials are capable of increasing the radiative decay rate of emission centers inside them. The proposed theoretical framework can also be used to design quantum-dot/nanoplasmonic composites with optimized luminescence enhancement. © 2014 Optical Society of America

    Structural tuning of color chromaticity through nonradiative energy transfer by interspacing CdTe nanocrystal monolayers

    Get PDF
    Cataloged from PDF version of article.We proposed and demonstrated architectural tuning of color chromaticity by controlling photoluminescence decay kinetics through nonradiative Forster resonance energy transfer in the heterostructure of layer-by-layer spaced CdTe nanocrystal (NC) solids. We achieved highly sensitive tuning by precisely adjusting the energy transfer efficiency from donor NCs to acceptor NCs via controlling interspacing between them at the nanoscale. By modifying decay lifetimes of donors from 12.05 to 2.96 ns and acceptors from 3.68 to 14.57 ns, we fine-tuned chromaticity coordinates from (x,y)=(0.575,0.424) to (0.632, 0.367). This structural adjustment enabled a postsynthesis color tuning capability, alternative or additive to using the size, shape, and composition of NCs

    Bio-nanohybrids of quantum dots and photoproteins facilitating strong nonradiative energy transfer

    Get PDF
    Cataloged from PDF version of article.Utilization of light is crucial for the life cycle of many organisms. Also, many organisms can create light by utilizing chemical energy emerged from biochemical reactions. Being the most important structural units of the organisms, proteins play a vital role in the formation of light in the form of bioluminescence. Such photoproteins have been isolated and identified for a long time; the exact mechanism of their bioluminescence is well established. Here we show a biomimetic approach to build a photoprotein based excitonic nanoassembly model system using colloidal quantum dots (QDs) for a new bioluminescent couple to be utilized in biotechnological and photonic applications. We concentrated on the formation mechanism of nanohybrids using a kinetic and thermodynamic approach. Finally we propose a biosensing scheme with an ON/OFF switch using the QD-GFP hybrid. The QD-GFP hybrid system promises strong exciton-exciton coupling between the protein and the quantum dot at a high efficiency level, possessing enhanced capabilities of light harvesting, which may bring new technological opportunities to mimic biophotonic events

    Anisotropic Emission from Multilayered Plasmon Resonator Nanocomposites of Isotropic Semiconductor Quantum Dots

    Get PDF
    Cataloged from PDF version of article.We propose and demonstrate a nanocomposite localized surface plasmon resonator embedded into an artificial three-dimensional construction. Colloidal semiconductor quantum dots are assembled between layers of metal nanoparticles to create a highly strong plasmon-exciton interaction in the plasmonic cavity. In such a multilayered plasmonic resonator architecture of isotropic CdTe quantum dots, we observed polarized light emission of 80% in the vertical polarization with an enhancement factor of 4.4, resulting in a steady-state anisotropy value of 0.26 and reaching the highest quantum efficiency level of 30% ever reported for such CdTe quantum dot solids. Our electromagnetic simulation results are in good agreement with the experimental characterization data showing a significant emission enhancement in the vertical polarization, for which their fluorescence decay lifetimes are substantially shortened by consecutive replication of our unit cell architecture design. Such strongly plasmon-exciton coupling nanocomposites hold great promise for future exploitation and development of quantum dot plasmonic biophotonics and quantum dot plasmonic optoelectronics

    Large-Area (over 50 cm × 50 cm) Freestanding Films of Colloidal InP/ZnS Quantum Dots

    Get PDF
    Cataloged from PDF version of article.We propose and demonstrate the fabrication of flexible, freestanding films of InP/ZnS quantum dots (QDs) using fatty acid ligands across very large areas (greater than 50 cm x 50 cm), which have been developed for remote phosphor applications in solid-state lighting. Embedded in a poly(methyl methacrylate) matrix, although the formation of stand alone films using other QDs commonly capped with trioctylphosphine oxide (TOPO) and oleic acid is not efficient, employing myristic acid as ligand in the synthesis of these QDs, which imparts a strongly hydrophobic character to the thin film, enables film formation and ease of removal even on surprisingly large areas, thereby avoiding the need for ligand exchange. When pumped by a blue LED, these Cd-free QD films allow for high color rendering, warm white light generation with a color rendering index of 89.30 and a correlated color temperature of 2298 K. In the composite film, the temperature-dependent emission kinetics and energy transfer dynamics among different-sized InP/ZnS QDs are investigated and a model is proposed. High levels of energy transfer efficiency (up to 80%) and strong donor lifetime modification (from 18 to 4 ns) are achieved. The suppression of the nonradiative channels is observed when the hybrid film is cooled to cryogenic temperatures. The lifetime changes of the donor and acceptor InP/ZnS QDs in the film as a result of the energy transfer are explained well by our theoretical model based on the exciton-exciton interactions among the dots and are in excellent agreement with the experimental results. The understanding of these excitonic interactions is essential to facilitate improvements in the fabrication of photometrically high quality nanophosphors. The ability to make such large-area, flexible, freestanding Cd-free QD films pave the way for environmentally friendly phosphor applications including flexible, surface-emitting light engines

    Large-area (> 50 cm × 50 cm), freestanding, flexible, optical membranes of Cd-free nanocrystal quantum dots

    Get PDF
    Colloidal semiconductor quantum dots (QDs) have been extensively explored for numerous applications ranging from optoelectronics to biotechnology. This strong demand for the colloidal QDs arises because of their favorable optical and electronic properties. From the application points of view, QDs typically need to be used in their solid form, as opposed to their as-synthesized dispersion form. For immobilization of QDs and homogeneity of their films, various polymers have been used to host QDs within solid media. However, the integration of QDs into a polymeric medium is commonly complex, which requires a high level of understanding to provide optical quality. © 2012 IEEE
    corecore