235 research outputs found

    Observation of Goos-H\"{a}nchen shifts in metallic reflection

    Full text link
    We report the first observation of the Goos-Ha¨\rm \ddot{\textbf{a}}nchen shift of a light beam incident on a metal surface. This phenomenon is particularly interesting because the Goos-Ha¨\rm \ddot{\textbf{a}}nchen shift for pp polarized light in metals is negative and much bigger than the positive shift for ss polarized light. The experimental result for the measured shifts as a function of the angle of incidence is in excellent agreement with theoretical predictions. In an energy-flux interpretation, our measurement shows the existence of a backward energy flow at the bare metal surface when this is excited by a pp polarized beam of light.Comment: The parer was published on Optics Express. The new version is modified according to the reviewers suggestion

    Extended polarized semiclassical model for quantum-dot cavity QED and its application to single-photon sources

    Get PDF
    We present a simple extension of the semi-classical model for a two-level system in a cavity, in order to incorporate multiple polarized transitions, such as those appearing in neutral and charged quantum dots (QDs), and two nondegenerate linearly polarized cavity modes. We verify the model by exact quantum master equation calculations, and experimentally using a neutral QD in a polarization non-degenerate micro-cavity, in both cases we observe excellent agreement. Finally, the usefulness of this approach is demonstrated by optimizing a single-photon source based on polarization postselection, where we find an increase in the brightness for optimal polarization conditions as predicted by the model.Comment: 8 pages, for simple code see https://doi.org/10.5281/zenodo.347666

    Herschel Planetary Nebula Survey (HerPlaNS) - First Detection of OH+ in Planetary Nebulae

    Get PDF
    We report the first detections of OH+^+ emission in planetary nebulae (PNe). As part of an imaging and spectroscopy survey of 11 PNe in the far-IR using the PACS and SPIRE instruments aboard the Herschel Space Observatory, we performed a line survey in these PNe over the entire spectral range between 51 and 672μ\mum to look for new detections. OH+^+ rotational emission lines at 152.99, 290.20, 308.48, and 329.77μ\mum were detected in the spectra of three planetary nebulae: NGC 6445, NGC 6720, and NGC 6781. Excitation temperatures and column densities derived from these lines are in the range of 27 to 47 K and 2×\times1010^{10} to 4 ×\times1011^{11} cm2^{-2}, respectively. In PNe, the OH+ rotational line emission appears to be produced in the photodissociation region (PDR) in these objects. The emission of OH+ is observed only in PNe with hot central stars (Teff_{eff} > 100000 K), suggesting that high-energy photons may play a role in the OH+ formation and its line excitation in these objects, as it seems to be the case for ultraluminous galaxies.Comment: 9 pages, 7 figures; accepted for publication in A&

    Shannon dimensionality of quantum channels and its application to photon entanglement

    Get PDF
    We introduce the concept of Shannon dimensionality D as a new way to quantify bipartite entanglement as measured in an experiment. This is applied to orbital-angular-momentum entanglement of two photons, using two state analyzers composed of a rotatable angular-sector phase plate that is lens-coupled to a single-mode fiber. We can deduce the value of D directly from the observed two-photon coincidence fringe. In our experiment, D varies between 2 and 6, depending on the experimental conditions. We predict how the Shannon dimensionality evolves when the number of angular sectors imprinted in the phase plate is increased and anticipate that D = 50 is experimentally within reach.Comment: 4 pages, 3 figures, accepted for Physical Review Letter

    Threshold and non-linear behavior of lasers of Λ\Lambda and V - configurations

    Full text link
    Dynamic properties of closed three level laser systems are investigated. Two schemes of pumping - Λ\Lambda and V - are considered. It is shown that the non-linear behavior of the photon number as a function of pump both near and far above threshold is crucially different for these two configurations. In particular, it is found that in the high pump regime laser can turn off in a phase-transition-like manner in both Λ\Lambda and V schemes.Comment: 9 pages, 5 figure

    The orbits of subdwarf B + main-sequence binaries. I: The sdB+G0 system PG 1104+243

    Full text link
    The predicted orbital period histogram of an sdB population is bimodal with a peak at short ( 250 days) periods. Observationally, there are many short-period sdB systems known, but only very few long-period sdB binaries are identified. As these predictions are based on poorly understood binary interaction processes, it is of prime importance to confront the predictions to observational data. In this contribution we aim to determine the absolute dimensions of the long-period sdB+MS binary system PG1104+243. High-resolution spectroscopy time-series were obtained with HERMES at the Mercator telescope at La Palma, and analyzed to obtain radial velocities of both components. Photometry from the literature was used to construct the spectral energy distribution (SED) of the binary. Atmosphere models were used to fit this SED and determine the surface gravity and temperature of both components. The gravitational redshift provided an independent confirmation of the surface gravity of the sdB component. An orbital period of 753 +- 3 d and a mass ratio of q = 0.637 +- 0.015 were found from the RV-curves. The sdB component has an effective temperature of Teff = 33500 +- 1200 K and a surface gravity of logg = 5.84 +- 0.08 dex, while the cool companion is found to be a G-type star with Teff = 5930 +- 160 K and logg = 4.29 +- 0.05 dex. Assuming a canonical mass of Msdb = 0.47 Msun, the MS component has a mass of 0.74 +- 0.07 Msun, and its Teff corresponds to what is expected for a terminal age main-sequence star with sub-solar metalicity. PG1104+243 is the first long-period sdB binary in which accurate physical parameters of both components could be determined, and the first sdB binary in which the gravitational redshift is measured. Furthermore, PG1104+243 is the first sdB+MS system that shows consistent evidence for being formed through stable Roche-lobe overflow.Comment: Accepted by A&A on 05-10-201

    Input-Output Relations in Optical Cavities: a Simple Point of View

    Get PDF
    In this work we present a very simple approach to input-output relations in optical cavities, limiting ourselves to one- and two-photon states of the field. After field quantization, we derive the non-unitary transformation between {\em Inside} and {\em Outside} annihilation and creation operators. Then we express the most general two-photon state generated by {\em Inside} creation operators, through base states generated by {\em Outside} creation operators. After renormalization of coefficients of inside two-photon state, we calculate the outside photon-number probability distribution in a general case. Finally we treat with some detail the single mode and symmetrical cavity case.Comment: 34 pages, 5 figures jpg, LaTe
    corecore