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Optical cavities can support many transverse and longitudinal modes. A paraxial scalar theory predicts that
the resonance frequencies of these modes cluster in different orders. A nonparaxial vector theory predicts that
the frequency degeneracy within these clusters is lifted, such that each order acquires a spectral fine structure,
comparable to the fine structure observed in atomic spectra. In this paper, we calculate this fine structure
for microcavities and show how it originates from various nonparaxial effects and is codetermined by mirror
aberrations. The presented theory, which applies perturbation theory to Maxwell’s equations with boundary
conditions, proves to be very powerful. It generalizes the effective one-dimensional description of Fabry-Perot
cavities to a three-dimensional multi-transverse-mode description. It thereby provides physical insights into

several mode-shaping effects and a detailed prediction of the fine structure in Fabry-Perot spectra.

DOI: 10.1103/PhysRevA.106.013501

I. INTRODUCTION

Tunable Fabry-Perot (FP) cavities are popular tools in op-
tics, where they are used as spectrum analyzer [1] and as a
means to resonantly trap light between two high-reflecting
mirrors [2]. An optical microcavity is a miniature version
of a FP cavity, where the two mirrors are now positioned
at only a few wavelengths A from each other and at least
one of the mirrors has a radius of curvature R,, < 100X\ (the
precise numerical factor is a matter of taste; the quote number
combines the criterion FA/R, > 10 for the observation of
fine structure with a typical finesse F = 1000). Microcavities
can strongly confine the optical field, boost the light-matter
interaction of intracavity emitters [3—8], and increase the col-
lection efficiency and emitted fraction into the zero-phonon
line [9].

Microcavities support compact optical modes with large
opening angles. This can push their operation beyond the
paraxial regime and can require a nonparaxial description of
the optical propagation and a more thorough description of the
mirror reflections. Elements of the resulting spectral finestruc-
ture have been reported [10-14], but a complete description
was missing.

Nonparaxial corrections to the optical propagation were
already analyzed in the seventies and eighties. Lax [15]
described a general framework that treats these corrections
as different terms in a Taylor expansion. Erickson [16,17]
calculated the scalar nonparaxial correction to the cavity reso-
nances. Cullen [18] and Davis [19] added a vector correction
to this description. Yu and Luk [20,21] and Luk [22] were
the first to combine these corrections in a complete analysis
of the optical resonances in cavities with spherical mirrors.
More recently, Zeppenfeld and Pinkse [23] performed an al-
ternative complete analysis of rotational symmetric cavities,
using spheroidal wave functions.
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Additional corrections occur when the mirrors are not
spherical, but have astigmatic or more general deformations,
common to microcavities [11,24,25]. Kleckner et al. [26]
presented a general framework to describe the effect of these
deformations, but their description does not yield analytic
solutions.

This paper presents a general theoretical framework for
the optical resonances in tunable FP microcavities. The de-
scription is semianalytic and exact in the limit of small
perturbations. It uses a round-trip operator that acts on field
profiles and uses perturbation theory to calculate the ef-
fects of several deviations from the standard paraxial theory
with spherical mirrors, including nonparaxial effects and
deviations from the spherical mirror shape. It thereby ex-
tends the standard one-dimensional (1D) description of the
Fabry-Perot interferometer to a three-dimensional (3D) multi-
transverse-mode description. The presented mathematical and
physical tools can be applied to a wide range of optical sys-
tems.

The paper then applies this theory to calculate the fine
structure in Fabry-Perot spectra. The paraxial scalar theory
predicts that modes with the same longitudinal mode number
q and transverse order N should be frequency degenerate. A
more complete theory shows that each (g, N)-group exhibits
a spectral fine structure, where modes with different radial
mode number p, orbital angular momentum (OAM) mode
number £, and polarization v have slightly different resonance
frequencies, even when they belong to the same (g, N) order.
The paper analyzes and classifies the different effects that
contribute to this optical fine structure and identifies which
ones are relevant under which conditions. It thus aims to
present a complete description of this intriguing phenomenon.

The fine structure in FP spectra is analogous to the fine
structure observed in atomic spectra. For atomic spectra, the
simple Bohr model of hydrogenic atoms predicts that their

©2022 American Physical Society
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energy levels should depend only on the principal quantum
number z. But a more complete description, that among others
includes relativistic corrections and spin-orbit coupling [27],
shows that levels with the same n are frequency split in the
so-called fine structure with additional quantum numbers, £
for the orbital angular momentum and s for the spin.

The presented theory is inspired by our own experimen-
tal observations of intriguing fine structures in transmission
spectra of FP microcavities [28] and the lack of an ade-
quate theory. Similar structures must have been observed by
other groups, but hardly anything has been published. For
microwave cavities, Erickson [16] measured the nonparaxial
frequency splittings between radial modes and Yu and Luk
[20] measured it between OAM modes. In the optical domain,
Dufferwiel er al. [29] reported a fine structure in the N = 1
group of an optical cavity filled with semiconductor quantum
wells, but this TE-TM splitting was mainly due to polariton
effects. Zeppenfeld ef al. reported an observation of a spectral
fine structure at the CLEO 2010 conference [30]. Raman
spectra of Riedel et al. [10] showed an astigmatic splitting,
but did not show an additional fine structure, presumably
because their cavities had a modest finesse F'; observable
nonparaxial fine structures require FA/Ry, = 10, for plano-
concave cavities with mirror radius R, and wavelength A.
When more detailed experimental spectra become available,
the most challenging aspect of their analysis will be the sepa-
ration of the, more fundamental, nonparaxial effects from the,
more practical, mirror-shape effects. This paper describes how
this can be done. The presented theory was already used to
analyze the experiments presented in a recent publication [28].

This paper consists of three parts: Secs. II and III contain
the description of the general framework, and ends with a
preview of the key results in a table and a figure; Secs. IV and
V present the derivations of the fine structure for cavities with
spherical mirrorsand end with a key equation that combines
all relevant effects for plano-concave cavities, plus a compar-
ison to the literature; Secs. VI and VII contain the analysis
of several effects for more general cavities. These effects
are additional scalar and vector corrections, including two
astigmatic corrections. Section VIII discusses the obtained
results and addresses the potential role of residual corrections.
Section IX presents a summary and outlook. There are four
Appendixes.

II. PARAXTAL SCALAR MODES

We consider the propagation and reflection of light in
a plano-concave Fabry-Perot (FP) cavity. Both mirrors are
highly reflective and large enough to avoid clipping losses,
such that all relevant modes are virtually lossless and spec-
trally well resolved. This cavity exhibits sharp resonances,
visible as peaks in the optical transmission and dips in the
optical reflection, at particular combinations of cavity length
L and optical wavelength A, where light is resonantly trapped
in the cavity. We want to derive the exact resonance condi-
tions and spatial profiles of the associated eigenmodes. This
problem sounds simple but is surprisingly difficult; there are
no exact solutions for the general nonparaxial case.

The propagation of light in the paraxial limit is stan-
dard material in many textbooks on optics [1]. We consider

a plano-concave cavity with perfect rotation symmetry, use
cylindrical coordinates defined by the symmetry z axis,
and denote position by (r, 8, z). This cavity supports a set
of matched Laguerre-Gaussian modes, with flat wavefronts
at the flat mirror (z = 0) and matched curved wavefronts
at the concave spherical mirror (z = L, radius of curva-
ture R,). The Rayleigh range zo = kwj = LRy — L)
determines the beam waist wq at the planar mirror, where
Eoo(r, 0) o exp(—r?/w3), the variation of the beam size
upon propagation, via wf = w(z)(l + zz/zg) = w%/ cos? x, the
radius curvature of the wavefront R(z) =R, =z + z% /2=
2z0/sin(2y ), and the phase lag x(z) = arctan(z/zy) of the
fundamental mode with respect to a plane wave. We split
the intracavity standing wave in forward- and backward-
propagating fields and write the slowly varying component
of the forward-propagating complex field of the Laguerre-
Gaussian modes of this cavity as E, , = W,J{z expi(kz — wt)
with

2R,

2

U (r0,2) = yl‘l’p,z(/?ﬁ, %) exp (ikr—>. ()
The radial quantum number p and OAM quantum num-
ber ¢ combine to the transverse order N = 2p + |£|. The
slowly varying backward-propagating field, v ,(r,0,2) =
—(1/y)¥pe(p, 0, —x)exp[—ikr?/(2R.)], is a mirror image
of the forward-propagating field and hence will not be con-
sidered explicitly. In Eq. (1) the normalized mode functions

W, (0,0, x) = fre(p)e™ exp[—i(N + Dx]  (2)

are the eigenmodes of the two-dimensional (2D) harmonic
oscillator in quantum mechanics (QM), in terms of the nor-
malized transverse position p = r/y,, with y, = w,/v/2 =
vo/ cos x. The amplitude functions

Ly [P g2 2
Tre(p) = (=1)" T L, (p")exp(=p~/2) (3)

contain the generalized Laguerre polynomials L}f‘ and a sign
factor (—1)” to make them equal to the transverse modes
generated by harmonic oscillator ladder operators (see Ap-
pendix C). All modes are normalized via

o0 2
w;ewgﬁzfo rdrfo do |y, (r,6,2)" =1, (4a)

00 2T
<wp,z|wp,z>s/ pdp/ do |V, (p,0, )I* =1,
0 0
(4b)

where |Y1) = |¢yT(z)) is the ket notation for the mode
YH(r,0,z2) = (r, 0|31 (2)). These integrals do not depend on
z or x; the modes remain orthonormal because optical propa-
gation is a unitary operation.

The resonance condition in a cavity is determined by the
requirement that the mode reproduces itself after a round trip.
This requirement is satisfied when R(L) = Ry,, which fixes
wop, and when the round-trip phase @oung is @ multiple of 2,
such that

@Pround = @ — (ppar — ¥non = 2 q, (5)
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where ¢ = 2kL is the plane-wave round-trip phase and ¢ is the
longitudinal quantum number. The paraxial round-trip phase
lag is given by @par = 2(N + 1)xo. The additional, typically
small, round-trip phase lag ¢,,, combines all nonparaxial and
mirror-shape effects. Equation (5) corresponds to resonant
cavity lengths

A
L= §[q+(N+1)§+M]} —2L,, 6)

where AD; = @on/(27) and L, is the phase penetration depth
into the (Bragg) mirrors (L, = 0 in the center of the stopband,
L, > 0 at positive detuning) [31]. Throughout this paper, we
will quantify the magnitude of each nonparaxial and mirror-
shape effect by its contribution to the dimensionless detuning
A7D; of mode j. The mode label j = {p, ¢, v} combines the
two transverse quantum numbers p and £ with a third vector or
polarization quantum number v (not a frequency); see Sec. V.

III. ROUNDTRIP OPERATOR AND PERTURBATION
THEORY

A. The round-trip operator M

The evolution of the optical field in a cavity can be de-
scribed by the round-trip operator M, which transforms the
forward-propagating field |1 ) into M| ) after a round trip
[26]. If we expand the field |y) = Zj cj|1ﬁj') into a set of

orthogonal basis states |1p;’), then we can write [T) as a
vector and M as a matrix. Finding the resonance conditions
and eigenmodes of the cavity now boils down to finding the
eigenvalues and eigenvectors of the round-trip matrix.

The round-trip operator in any two-mirror cavity can be
written as M = PYAP~ B, where A and B represent the reflec-
tions from the left and right mirrors and P and P~ represent
the propagation from A to B and back (see Fig. 1). In a
plano-concave cavity with a large smooth planar mirror, A is
equal to unity and M = PB, where P = PTP~ describes the
round-trip propagation and B describes the reflection from the
concave mirror.

In a typical experiment, we illuminate the optical cavity
with an input field |y;") through mirror A, and we observe the
output field |1} through mirror B, as a function of the cav-
ity length or the optical frequency. The forward-propagating
intracavity field [y ) at mirror B can be calculated by
summation over an infinite series of reflections and repeated
operations of the round-trip operator

l‘]P+

Vi) = (M M 40Py =

¥,
(7)

where #; and #, are the amplitude transmissions of mirrors
A and B. Equation (7) extends the single-mode treatment as
found in many textbooks to a multi-transverse-mode treatment
of the Fabry-Perot cavity, by treating P* and M as operators
instead of scalars, and | ) as a field profile instead of a field
amplitude. The output field is derived from the cavity field as
Vi) = L1V,

The round-trip operator M determines the full dynamics of
the intracavity field, as it contains the eigenfrequencies and
damping rates of all cavity modes. To highlight this link, we

FIG. 1. Geometry of a plano-concave cavity. Starting from the
right, the optical round trip M = P*AP~ B includes reflection from
the concave mirror B, propagation P~ to the left, reflection from
mirror A, and propagation Pt to the right. The shape of the concave
mirror is specified by its distance z,,(x, y) > 0 from the plane z = L.
The wavefront of the intracavity mode j is flat at mirror A and almost
spherical, and described by z;(x, y), at mirror B.

write
M = exp(ip — iH — A), ®)

with Hermitian operators # and .A. For the single-mode
case, the scalar H = ¢; describes the round-trip phase lag
of mode j with respect to the plane-wave round-trip phase
¢ = 2kL. The other scalar A = y; describes its round-trip
modal loss, where y; = y, + Ay; combines the reflection loss
¥r & 1 — ryrp (for amplitude reflectivities r; 5 close to unity)
with the potential extra loss Ay;, like the clipping loss from
the finite-size mirrors. For the multimode case, the dimension-
less operator H describes the conservative dynamics, while
the operator A describes the dissipative dynamics of all modes
[32,33].

The dynamics of the intracavity field is typically dominated
by the modes that are close to resonance, i.e., modes for
which ||(1 — M)|w;r)|| ~ 0. We highlight this by expanding
(1 —M)~i(H— ¢)mod(2m) + A, where the first term is
taken modulo 2w to remove expi2wg = 1. In the eigenba-
sis of the dynamics operator, defined by M |1//f) = exp(ip —
ip;j—vy j)|1ﬁ;'>, the output field of the multimode Fabry-Perot
cavity can be written as

i) =3 —2

————— P YO W ), O
T~V —ile—9) o

where (¢ — ;) is again taken modulo 27. Only modes close
to resonance, with (¢ — ¢;) ~ 0 mod (2 ), contribute signifi-
cantly to the transmission.
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The transmission spectrum described by Eq. (9) is the
counterpart of the dynamic equation

d
TroundE|w+>X =¥y — v H)x

~M =Dy )y +aPtYnx,  (10)

which describes the evolution of the intracavity field |y ™)
from round trip X to round trip X + 1, in the round-trip time
Tiound- This equation again shows that resonances in opti-
cal cavities behave like coupled harmonic oscillators, whose
(complex) eigenvalues and eigenstates are determined by the
resonance condition (H — i A)|Y;) = (¢; — iyp)|y;).

This equivalence was discussed earlier by Haus [34] and
later extended by Fan et al. [35]. Suh, Wang, and Fan [33]
expressed the dynamics of the field in any multimode cavity
in its most general form as

d . . T
Ea: —(Q+Da+«" |s4), an
where the vector @ combines the (complex) amplitudes of all
relevant cavity modes, 2 and I" are dynamic matrices, and the
matrix 7 couples the (multichannel) input field |s, ) to the
cavity modes. Our Eq. (10) resembles Eq. (11), but also differs
in three ways: First, Eq. (10) expresses the intracavity field
| ) and input field |1ﬁ$) as two 2D field profiles, whereas
d in Eq. (11) is a 3D intracavity field while |s+) is a 2D field
profile; the latter difference introduces a square root of time in
the dimension of « . Second, Eq. (10) describes the evolution
of the slowly varying field ¥ (¢) whereas Eq. (11) describes
the slowly varying evolution of the (positive-frequency part of
the) full field E (¢); this difference results in a factor exp(i¢)
in M. Finally, and most importantly, our Eq. (10) links the
dynamics of the intracavity field to the round-trip operator M
it can thus be used to analyze this dynamics and calculate the
intracavity modes and their properties.

B. Perturbation theory applied to H

From now on, we will neglect losses, assuming A ~ 0.
We will remove the + subscript and interpret |¢) as the
forward-propagating field at the curved mirror, i.e., V) =
| T(z = L)). This is allowed when resonances are sharp and
when we are not interested in their spectral width. We split
the dynamic operator as H = Hpar + Hpne and associate the
resonance with a hard zero in the resonance condition

(M — Dly) = [expi(e —H) — 1Y)
~i(p — 6127T - Hpar — Hane)l¥) =0, (12)

where g is the longitudinal mode number. The operator H
describes the paraxial evolution in a cavity with a spherical
concave mirror. The operator Hsne describes the typically
small modifications due to nonparaxial propagation and re-
flection from a nonspherical mirror.

The dynamic matrix Hp, is diagonal in the basis of the
paraxial eigenmodes presented in Sec. II. The on-diagonal el-
ements are equal to the round-trip phase lag ¢; = 2(N + 1) xo
and are thus identical for modes with the same transverse
order N. Each N-group contains 2(N + 1) modes, divided
over (N + 1) spatial profiles, labeled by (p, £) for the scalar
LG modes, times two polarizations.

The fine structure operator Hgne can lift the frequency
degeneracy within each N group and reshape the eigenmodes.
We calculate these effects by applying perturbation theory to
Eq. (12). In principle, this perturbing operator can couple and
mix all paraxial modes. In practice, it mainly mixes modes of
the same order N. The fine structure within each N group is
thus described by first-order frequency-degenerate perturba-
tion theory and by the transverse-mode matrix

Gfine,jj = 2T AVjr; = (Y| Hinel V) K 1. (13)

The eigenvalues of the matrix AP yield the spectral shifts,
i.e., the fine structure. The eigenvectors of A yield the eigen-
modes of the cavity.

The coupling between modes from different transverse
orders is far less effective and described by second-order
frequency nondegenerate perturbation theory [36]. This yields
coupling rates of the form Aby.y ~ w(ADy ;)?/[(N —
N")xol, where (N — N")xo/7 is the frequency difference be-
tween the paraxial modes in the N and N’ groups. From a
mathematical perspective, nonresonant coupling is strongly
suppressed by the denominator (N —N")xo > w APy ; and
can typically be neglected. From a physical perspective, the
extra field —iHgne|Y) in Eq. (12) remains trapped only when
it fits resonantly in the cavity and light scattered to other
modes does not build up resonantly, is quickly lost, and can
thus be neglected. The only exception to this rule is the situ-
ation where modes of different orders are accidentally almost
frequency degenerate [37]; we will not consider this case any
further.

C. Symmetry aspects and scalar vs vector modes

The eigenmodes of the fine structure operator Hgye can
often already be determined from the symmetry of the system.
For cavities with rotation symmetry, each scalar eigenmode
has a fixed OAM, with quantum number ¢, and each vector
mode has a circular polarization o, with spin quantum num-
ber s = 1. For cavities with additional mirror symmetry, as
is common, the £ and —£ eigenmodes should be frequency de-
generate. From now on, we will use this argument repeatedly
and take ¢ > O throughout the main text. Hence, the ¢ 7% 0
modes are expected to form frequency-degenerate groups of
four polarized modes, while the £ = 0 modes are expected to
form polarization pairs. Below, we will show that spin-orbit
coupling breaks each £ # 0 group of four modes into two pairs
of vector modes. We will also show that the final pairwise
degeneracy is more difficult to break. In analogy with the
atomic fine structure, we propose to call the final pairwise
break-up the hyperfine component of the fine structure. But
first, we will discuss general symmetry aspects of Hgpe, based
on the distinction between scalar versus vector effects and
between rotation-symmetric versus astigmatic cavities.

The calculation of most scalar corrections is based on the
idea that the extra field —iHgpne|t) results from the mismatch
between the shape of the concave mirror and the wavefront
of the mode. The reflected field is multiplied by a fac-
tor exp(2ikAz) ~ 1 4 2ik Az and Hgne = —2k Az, or actually
Hine = +2kAz with our sign definition, where Az(x,y) =
Zmirror — Zwave and POSItiVe Zmirror aNd Zwave point towards the
plane mirror (see Fig. 1). Substitution of Hg,e = 2kAz into
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TABLE I. Overview of various contributions to the transverse mode spectrum, with their abbreviated name, operator form, preferred basis,
relative strength (= nonparaxial phase lag) ¢;, and associated section. The paraxial contribution has no preferred basis; the rotation-symmetric

corrections prefer the LG basis; mirror astigmatism prefers the HG basis.

Category Contribution H Form Preferred basis Magnitude ¢; = 2 AV, Discussed in
Paraxial Paraxial Paraxial r? and k3 No preference 2(N + 1)arcsin /L/R, Sec. II
Nonparaxial scalar
(Known) Propagation/Helmholtz ~ prop Kt Scalar LG Magnitude prop+wave: Sec. IVA
Nonparaxial Wavefront/spherical wave r4 Scalar LG [g(p, €) +4]1/(4kRy) Sec. IVB
Mirror aspheric asphere rt Scalar LG —pf(p, O)L/[4kRn(Ry — L)]  Sec. IVC
Nonparaxial vector vec FRk n Vector LG [—1 —2s]/(kRn) Sec. VB
= spin-orbit coupling
(This paper)  Mirror Bragg correction Bragg kL @k Vector LG £Co(N + 1)/(kzo) Sec. VI
Vector Hyperfine for 1A+ modes
k2 (kL ®Kky) o C;, (not analyzed in detail)
(This paper) ~ Mirror astigmatism astigm x2 —y? Scalar HG Nastigmv/L/ (R — L) Sec. VIIA
Scalar (of-diagonal, A¢ = +2)
(This paper)  Mirror astigmatic vector v+a x and y polarized FNastigm/ (KRim) Sec. VIIB
Vector = anisotropic spin orbit Hyperfine for £ = 0 modes

Eq. (13) results in a dynamics matrix of the form
. 2
Abjy; = X(Wj’MZWj)
2
= /f dxdy Az(x, y) Yy (e, )Y (x,y), (14

where Az = Zmirror — (zj +2;)/2. The complex conjugation
removes the curvature and Gouy phase from v (x, y).

For a rotation-symmetric cavity, this matrix is diagonal in
the eigenbasis of the scalar LG modes, and the fine structure
is given by

2 2
8%y = Stwlaciy) =+ [[ dxdy detxy P

15)
where Az = Znmiwor — 2; is the mismatch between the shape of
the mirror Zyiror and the wavefront z; of the paraxial LG mode
Jj. Equations (14) and (15) can also be derived by applying the
theory of Kleckner ef al. [26] to a plano-concave cavity with
Az < A/2 (see the Appendix of Ref. [37]), but the derivation
presented above is easier.

Let us consider two simple examples of Eq. (15). As the
first example, we consider a uniform displacement of the
curved mirror towards the plane mirror over Az =« > 0.
Substitution in Eq. (15) yields AD; = 2a//A for all transverse
modes and substitution in Eq. (12) shows that the resonant
cavity length increases by AL; =« for all modes, as ex-
pected. As the second example, we analyze the effect of a
small increase in the mirror curvature, described by Az = r?
with 8 > 0, making AR, = —2,BR[2n < 0 assuming |ARy,| <
Ry, Substitution into Eq. (15) now yields AD; = (2/1) x
B(N + 1)(w?/2). Substitution in Eq. (6) again yields the asso-
ciated change in the cavity length, which now equals AL; =
BN + l)(w% /2) > 0. This result can be fully attributed to
the change in the Gouy phase (N 4 1)xo due to the in-
creased R, at fixed L. Using xo = arcsin /L/R,, with Ay =
—+/L/(Ry — L)AR,/(2Ry,) and the expression for w% = wf
at z = L presented in Sec. II, we again find full agreement.

The calculation of vector corrections requires an extension
from scalar modes |v;) to vector modes |1ﬁ ;) and from scalar
operators to 2 x 2 tensor operators. We will discuss two dif-
ferent vector corrections in Secs. V and VI and show that (1)
the spin-orbit coupling is relatively strong and present for all
£ # 0 modes and (2) the Bragg correction is typically weak
and mainly observable for some £ = 1 modes.

In Sec. VIT A we will analyze astigmatic cavities, without
rotation symmetry. We will show how astigmatism modifies
the eigenvalues and eigenmodes, by coupling modes with
different ¢, and how it retains the twofold degeneracy of the
£ # 0 modes while creating a small (second-order) frequency
splitting of the £ = 0 pair.

D. Contributions to the fine structure (Table I)

The optical fine structure has many contributions, which
are linked to different physical processes and described by
different contributions to the fine structure operator Hgpe and
its transverse mode spectrum. Table I lists the most relevant
contributions and compares their properties and approximate
strengths. The contributions are divided in five categories or
blocks: The first block describes the effect of the paraxial
operator Hp,. The second block describes effects that occur
in cavities with rotational symmetry. These effects are divided
in two nonparaxial scalar effects Hgcatar = Hprop + Hwave, an
aspherical mirror effect Hasphere, and a nonparaxial vector
effect Hec. The third block describes a vector effect Hpragg
that occurs in rotation-symmetric cavities with Bragg mirrors.
The fourth and fifth blocks describe the effects of astigmatic
mirrors, divided in the dominant effect H,iom and a second-
order effect H,,,. The effects in the second block have been
discussed in the literature, albeit often as individual effects
and in different notations; the analysis of the effects in the
third to fifth block is our own. All mentioned effects are
typically small and hence simply add up, albeit as matrices
if they prefer different bases.

The first three columns in Table I show the names of the
various effects and their origin. The fourth column shows
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q=2
N=3 3 N=1, A+/-__- HG3o
22t 1=3, At /-2 - — H&Zl
i =1, B+/- ~~=———nG1
1 N,
! S————1=3, B+/---- HGo3
[ N=2 1=2, A+/-_- HGo>
. ,"; < =0, x/y ~~-———HGn
> ¥ S———|=2, B+/---- HG2o
g i
9] ] N=1
2 " - =1, A+/---- HG1o
o " T—|=1, Bt/ HGo1
L :':' H
l'l' !
ii N=0
,‘,'/' ¥ =0, xly --- HGoo
s
q=1 .';/
planar paraxial nonparaxial astigmatism

FIG. 2. Sketch of the expected resonance frequencies of an opti-
cal cavity (vertical axis) under the influence of various perturbations
(horizontal axis). Left column: modes in a planar cavity. Second col-
umn: paraxial modes in a plano-concave cavity. Third column: fine
structure in a rotational-symmetric cavity. Right column: modified
fine structure in an astigmatic cavity.

the functional form of the associated operator Hgpe. The fifth
column shows the preferred eigenmodes, which are Laguerre-
Gauss (LG) scalar or vector modes for rotation-symmetric
cavities and Hermite-Gauss (HG) modes for astigmatic cav-
ities. The sixth column quantifies the relative strengths of
the expected effects. The final column refers to the sec-
tions in which each effect is discussed. Sections IV and V
describe three scalar corrections and the spin-orbit vector cor-
rection for rotation-symmetric cavities. Together, they present
the “known” nonparaxial rotation-symmetric corrections dis-
cussed in the current portion of the paper. Section VI describes
the vector Bragg correction for rotation-symmetric cavities
with Bragg mirrors, while Sec. VII analyzes two scalar cor-
rections in astigmatic cavities. Together, they present the
nonparaxial effects that form the basis of that portion of this
paper.

Figure 2 shows a sketch of the changes expected for the
different contributions. The first two columns show how the
paraxial resonances in a planar and a plano-concave cavity
cluster in groups with the same quantum numbers g and N.
The third column shows how nonparaxial scalar and vector
corrections split these clusters into pairs of modes with ad-
ditional quantum numbers ¢ and v. The right column shows
how deviations from rotation symmetry, due to astigmatic
mirrors, will modify both the fine structure and the character
of the eigenmodes, from LG modes to HG modes. The third
and final column depicts the fine structure mentioned in the
title. A detail that is not visible in the figure is that each line
consists of two, typically frequency-degenerate, modes that
sometimes exhibit a tiny hyper-fine splitting. Below we will
show that these hyperfine splittings originate from mixing of
optical polarizations and that the £ = 0 and £ = 1, A modes
are most susceptible to hyperfine splittings.

We end this section by addressing the completeness of our
list of nonparaxial effects. We first note that operators that are
3" order in 7 and k | are irrelevant for cavities with inversion
symmetry, as their effects average to zero. But why did we

single out the listed effects as the dominant ones, and why
did we choose not to include other second- and fourth-order
contributions to Hgpe that are also allowed by symmetry?
Our reasoning is as follows: A potential contribution of the
fourth-order operator °k? , whatever its physical mechanism,
is probably much weaker than that of the related second-order
operator 7@k, and has hence been neglected. The same
argument applies to the operator x* — y*, which describes the
nonparaxial contribution to the astigmatism. Furthermore, we
find it hard to envision a physical mechanism for the ¥ ® 7
operator. And scalar k> — kf, and k.k, operators are probably
relevant only in birefringent cavities. Hence, we think our list
is complete for most practical purposes.

IV. NONPARAXIAL SCALAR CORRECTIONS

A. Helmbholtz correction F prop

The Helmbholtz correction Hpp originates from a non-
paraxial contribution to the propagation. nonparaxial propa-
gation has been studied extensively; Ref. [38] gives a brief
historic overview.

We base the first part of our analysis on the work of Lax
[15], who starts by noting that the intracavity optical field E (7)
must satisfy Maxwell’s equations, which for a monochro-
matic field reduce to the vector Helmholtz equation (V> +
K)E () = 0 and the divergence condition V-E (7) =0. He
then introduces the slowly varying forward-propagating field,
which we write as E = (¥, + ¥.2.)expi(kz — ot), where
¥, combines the transverse components ¥, and Yy and ¥,
is the axial or longitudinal component. And he expresses
this field as a Taylor expansion of the paraxial field and a
series of nonparaxial corrections, with amplitudes that decay
as a power series in the expansion parameter f = 1/(kwg) =
®¢/2 K 1, where wy is the waist and ®y is the opening angle
of the fundamental paraxial mode. The resulting equations are

d\ -
<AL + 2ikd—z)1/f(f)(?) =0, (16)
. O dy©
7y ~ L (DY ’ 17
Y, (F) k( Ix + dy > (I7)
d\ - d* . A2

. 2) = ©0) ~ (0)

<Al+21kd—z)1pL () =~V ~ﬁ 0, (18)

where V | = 0xé, + 0,€, is the transverse nabla operator and
Al = ﬁi = 83 + By?. These three equations describe, respec-
tively, the evolution of the paraxial field tfff), the axial field
¥, and the extra (nonparaxial) transverse field v

The scaling or expansion argument of Lax [15] is as fol-
lows. For Gaussian beams with a waist w, the “transverse”
derivatives d /dx and d /dy in Eq. (17) will generate factors of
the order 1/wo. Hence, the axial field y{" is approximately
a factor f = 1/(kwy) smaller than the transverse field &f)
The extra “axial” derivative d/dz in Eq. (18) will generate a
factor of the order 1/z9. Hence, the nonparaxial Helmholtz
correction to the transverse field, 1/712) , will be about a fac-
tor f2 /4=1/ Qkwo)?> =1 /(8kzp) smaller than the original
paraxial transverse field. By ending the Taylor expansion after
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the f2 term, we neglect an even smaller > correction on v,
and an f* correction on v .

To calculate the nonparaxial scalar correction, we use a
procedure introduced by Erickson [16]. We consider the prop-
agation of a paraxial LG mode j from the flat to the concave
mirror and expand the propagating field in the basis of LG
modes as [16]

V@)= 1Y)+ Y i@l ), (19)
-

with ¢;(0) = 0 and c;(z) < 1. Substitution in Eq. (18) and
projection on [y;(z)) shows that nonparaxial propagation
modifies the paraxial modes by

de/(Z) _ ;l
dz  8k3

(Y| AT 1Y(2)). (20)

Erickson [16] has shown that the action of the Aﬁ_ operator,

or the related % operator, on LG modes changes p to p’ =
p—2,p—1,p,p+ 1, p+ 2, butdoes not affect £ on account
of the rotation symmetry. But we are interested only in the
p' = p term, as the coupling to modes with different order N
is nonresonant.

Equation (20) becomes intuitive when we write
(;|A% 1Y) = (k1). We find that the correction dc;(z)/dz
to the propagation ik, originates from the third term in the
VK2 — k2 =k — k3 /(2k) — k% /(8K?).
As LG modes retain their functional form under Fourier
transformation, one easily finds (Y, ¢|A%|¥,.) = (k}) =
4f(p, £)/wg, where f(p,£) is defined in Eq. (22). This
result, and many others, can also be derived with the operator
algebra described in Appendix C. Substitution in Eq. (20)
yields the relative frequency shift of the cavity resonances
Av;/v = —Ak;/k = f(p, £)/(2k*w3) > 0. Conversion to
a normalized frequency AD; = (2L/A)Av/v, yields the
Helmbholtz contribution to the fine structure

: Lf( l) =
87k 23 P o=

Taylor expansion k, =

N w?
AVprop.j = —f(p,0), (21
Wy

8mkR
in terms of the polynomial [21]

f(p, ) = 6p> 4+ 6pl + €2 4 6p 4 30 +2
3 1
=-(N+17%-=
2( +1) 2(
with £ > 0. This result is consistent with earlier results of
Erickson [16,17], Yu and Luk [20,21], and Luk [22].

2 -1, (22)

B. Wavefront correction Hayve

The wavefront correction Hyaye Originates from the differ-
ence between the optical wavefront and a reference surface.
On first sight, one might think that the paraxial wavefront
should be parabolic, because the optical phase ¢(r, z) = kz —
(N + Dy + kr? /(2R) in Eq. (1) increases quadratically with r
in any z plane. But wavefronts are defined by surfaces of fixed
phase, and both x and R are functions of z. To find the true
wavefronts, we use the pragmatic approach of Yu and Luk [21]
by expanding x (z) and R(z) around the paraboloidal reference
surface z = L — r?/(2Ry,) that one would naively expect, to

find

Zwave (I‘) =

2 2(N+1) r? r . 2L
2R kKw? 2R, 4RAL ( R )
(23)

where Zyawe(z) > 0 for displacements from the z = L plane
towards the flat mirror; see Fig. 1. Incidentally, an alternative
Taylor expansion of x(z) and R(z) around a spherical, instead
of a paraboloidal, surface would yield a similar result, as the
extra terms are relatively small for L <« Ry,. The first term in
Eq. (23) yields the curvature that we started from. The second
term shows that the central parts of the wavefronts are actually
more curved by a relative amount 2(N + 1)/(kw,)?. The final
r* term makes the outer regions of the paraxial wavefronts
“flatter than paraboloidal” for the typical case L < Ry, /2, and
even farther away from spherical.

We compare the paraxial wavefronts with the surface of a
spherical mirror

2 A
Zmirror () = Ry — Ré—r2%ﬁ+@_ (24)

The mismatch Az = Zmirror — Zwave results in a shift of the
resonance by an amount Adyae = (2/A)(;|Az|;). We sub-
stitute Egs. (23) and (24) into Eq. (15), to find

N + 1)? N 2
Mwm’jz_( ullORPACL)) 3_w_;
2mkRy, 8mkRy w§
1 w?
= O +4— Lrp o], 25
8nkRm[g(p )+ w%f(p )} (25)
with [21]

gp. O +4=2p"+2pl — +2p+L+2

—lN 1)? 352 1 26
—§(+)—§(—). (26)

To obtain this result we used (r?) = (N + 1)w%/2, (r*y =
f(p, Owt/4, and wi/wi = Rym/(Rm — L), and wrote some
combinations of L and Ry, in terms of the beam waists wy
and w; at the two mirrors. Our Eq. (25) is identical to Eq. (27)
in Ref. [22] and consistent with Eq. (19) in Ref. [21].

The combination of Egs. (21) and (25) finally yields the
total nonparaxial scalar correction for a plano-concave cavity
with a spherical mirror

1
A‘ﬁjsc:alar,j = Alkjprop,j + A1~)wave,j = m[g(l?a 6) + 4]
27

That the sum of the two scalar corrections does not depend on
the cavity length suggests an underlying physical reason, but
we have not found it yet.

C. Aspherical correction Haspnere

In the previous section, we calculated the wavefront correc-
tion by comparing the shape of the wavefront with a spherical
mirror. We will now calculate the effect of a deviation from
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this spherical mirror shape by an amount

4

p—ro 28
pSan (28)

Zmirror (X, ¥) — Zsphere (x,y)=—

where p =0 for a sphere (our reference) and p=1 for
a paraboloid. This aspherical correction modifies the third
term in the Taylor expansion z,,(r) = a + brr+cr*+--. of
a rotation-symmetric mirror. Substitution of Eq. (28) in the
generic Eq. (15) yields the aspherical correction

_fp.t) . L
87kRy ' Ro — L

A ‘N)asphere,j = (29)

This result is consistent with the result of Zeppenfeld and
Pinkse [23], who chose the paraboloidal mirror as their
reference shape instead, and used a different notation; see
Appendix A.

A comparison between Eq. (29) with Eq. (27) shows that
the aspherical correction contains an extra factor L/(Ry,, — L).
The aspherical correction is thus relatively small for short
cavities (L < Rp,), basically because the modes in these cav-
ities are relatively compact and hence relatively insensitive to
mirror deformations.

V. VECTOR CORRECTION AND L-S COUPLING
A. Vector LG modes

The analysis presented above used the scalar LG modes
[Vp,¢) as basis set. This section extends the analysis to vector
fields, by including the optical polarization. It starts by in-
troducing the vector LG modes |1/7p, ¢.v), with their additional
vector quantum number v.

J

€,0(0) = cos (£0)é, + sin (£0)é, = cos [(£ — 1)0]é, + sin [(£ — 1)0]&y
€¢,v(0) = —sin (L0)é, + cos (£0)é, = —sin[(£ — 1)8]é, + cos [(£ — 1)6]éy
€,0(0) = cos (£0)é, — sin (£0)é, = cos [(£ + 1)0]é, — sin [(£ + 1)0]&y
€¢,0(0) = sin (£0)é, + cos (£0)é, = sin[(£ + 1)0]é, + cos [(£ + 1)0]éy

Figure 3 shows the polarization profiles of the A and B modes
for £ = 0 — 3. Note that all + modes have é(0 = 0) = €, and
all — modes have é(6 = 0) = é,. Our short-hand notation
for these modes is |0X+) and |0Y —) for the £ = 0 modes
and |fA+) and |¢B=) for the £ > 1 A+ and B4 modes. The
radial dependence f,¢(p) is not included in this labeling but
can be easily added with an extra quantum number p, or
N =2p+¢.

The twofold frequency degeneracy expected in a cavity
with rotation and mirror symmetry has two consequences.
First, it makes it difficult in experiments to find the true
eigenmodes of the cavity, as the output field |1/oy) will be
a superposition of the two degenerate modes with relative
amplitudes that are determined by the input field |1/7m). Sec-
ond, in the theory it leaves room for an alternative labeling of

In a cavity with mirror and rotation symmetry, the paraxial
scalar modes v,  and v/, _, with £ > O are frequency degen-
erate. For vector fields, one also expects x- and y-polarized
vector versions of these modes, such that the £ = 0 mode is
twofold degenerate and the £ % 0 modes are fourfold degen-
erate. But in reality, the four £ # 0 modes couple and split into
two frequency-degenerate pairs which differ in the orientation
of the photon spin s, or circular polarization o, with respect
to the orbital angular momentum ¢ due to a form of L-S
coupling (see Sec. V B).

We will use the notation of Yu and Luk [20] and label
the resulting vector LG modes as (1) series A modes with
total angular momentum J = £ — 1 and (2) series B modes
with total angular momentum J = ¢ + 1. Each A and B mode
is a superposition of (¢, s) and (—¢, —s) circularly polarized
modes, where £ > 0 and s = —1 for A modes and s = +1 for
B modes. To distinguish between the 4+ and — superposition
within each set, we add a second component to the polariza-
tion label which we denote by + and —, depending on the
symmetry of the state under mirror action in the xz plane.
With these polarization and symmetry aspects in mind, we
specify the vector quantum number as v = {y, x} = {+, —} for
the two p, £ = O modes and as v = {A+, A—, B+, B—} for the
four p, £ > 1 modes.

As a vector generalization of the scalar paraxial modes of
Egs. (1)-(3), we write the transverse field of the vector LG
modes as

- 1 2
VSea(0:0 =~ 2a@fpep)exp [ikZ’—RZ —i(N + 1)4.
(30)

For £ = 0 modes: €y _4(0) = ¢, and éy _(9) = é,. For £ > 1
modes, the vector fields are also linearly polarized, but the
orientation of this linear polarization depends on 6 as [20]

(for v = A+),
(for v =A-),

(for v = B+),

(for v = B—).

(

the vector modes. Zeppenfeld and Pinkse [23] chose the total
angular moment J = £ + s and the circular polarization o4 as
labels, instead of our £, v labels. The vector profiles of their
(J, 01) modes, which are of the form é; ,, (0) = € exp £il6
with é; = (é, £ ié,) as circular polarizations, are linear su-
perpositions of our A and B modes (see Appendixes A and C).

B. Nonparaxial vector correction H ..

The nonparaxial vector correction H,y,. originates from the
vector character of the optical field, and in particular from
the small axial component of the optical field. At the curved
mirror, part of this axial field transforms into a reflected trans-
verse field because the boundary condition is not described by
E, = 0 but by the requirement that “E is directed along the
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FIG. 3. Sketches of the polarization profiles, indicated as lines,
of the vector LG modes for £ = 0 — 4. The two £ = 0 modes are x
polarized and y polarized. Each of the four £ > 1 modes split in two
A and two B modes; the 14+ mode is radially polarized; the 1A—
mode is azimuthally polarized; the other modes have a mixed radial-
azimuthal polarization. Most modes occur in two versions, with field
patterns that are rotated over half a lobe or finger with respect to each
other. The +/— labels indicate whether the vector field is symmetric
(+) or antisymmetric (—) upon reflection in the x axis.

surface normal.” Cullen [18,39] was one of the first to mention
this vector correction. Davis [19] quantified it for a linearly
polarized fundamental Gaussian mode, using geometric ar-
guments. The vector correction to the reflection produces an
effective spin-orbit coupling that is similar to the one observed
under strong focusing [40,41].

Yu and Luk [21] and Luk [22] generalized the analysis to
any vector LG modes. They derived the vector corrections
of these modes with the so-called action theorem, which is
based on thermodynamic arguments and relates the relative
frequency shift to the relative change in stored energy, via
Af/f = AW/W [19,21,22,42]. In this subsection, we will
instead use the round-trip-matrix formalism to generalize the
calculation to the vector coupling between any pair of modes.
The round trip formalism is more general because it yields a
coupling matrix, whereas the action theorem yields only the
on-diagonal elements of this matrix.

We start our analysis with the earlier statement that ev-
ery nonuniform transverse field has an axial component
v, & (i/k)%i . &l; see Eq. (17). For the transverse vector
field described by Eq. (30), the operator V, yields three
contributions: The derivative of the phase factor in Eq. (30)

yields the in-phase field ¢, = —(r/R){/, needed to orient
the vector field of the traveling wave along the curved wave-
front; this field has no further consequences. By contrast, the
derivatives of the two other factors in the right-hand side
of Eq. (30), which together form the normalized derivative
V- U(p,H), yield a small out-of-phase longitudinal field that
projects into an additional radially polarized transverse field
that does modify the resonance. This projection includes a
geometric factor —7/R,, and a factor 2 to account for the
standing-wave character of the field, similar to the factor 2
in the phase lag 2kAz that described the mirror shape. The
resulting additional transverse field is

. 2P
—i
kR

where p=7/y, and V, =2&.(3/dp.) +2,(3/dp,) =
(é,/p)0/0p)p + (€9/p)d/00 is the transverse derivative
vector operator in normalized coordinates. By comparing
Eq. (31) with the generic equations in Sec. III, we find the
nonparaxial vector corrections

1

Abyec.jj = m@nﬁ@w@,), (32)

‘I’J_,projecl = ﬁl ' \TJL(?)s (31)

where the tensor product symbol ® indicates that Al operates
on |¢fj) and p operates on (\flj/|.

The rotation symmetry of the p ® v, operator imposes
conservation of total angular momentum J' =J. In Ap-
pendix C we will show that vector coupling is even diagonal,
both in the basis of the vector LG modes and in the basis of the
(J, 0+) modes of Zeppenfeld of order N. The corresponding
(normalized) frequency shifts are

-1 —1—t-s
27kR,  2mkR,,

where the + sign applies to A modes, with total angular
momentum J = ¢ — 1, and the — sign applies to B modes,
withJ = ¢+ 1.

Equation (33) agrees with earlier results presented in
Refs. [21-23]. For £ > 1 modes, the vector correction acts
as an effective L — S coupling, denoted by £.s in Eq. (33),
which splits each set of four £ > 1 modes into two pairs
of frequency-degenerate vector modes. For the two, x- and
y-polarized, £ = 0 modes, Eq. (33) yields equal shifts. These
results can be derived by the operator algebra described in
Appendix C or by partial integration over vector fields of
the form lle(,o, 0) =¢€;(0)f(p). For the x-polarized £ =0
mode, |) = &,|¥), the result simplifies to (V|7 @ V, |¥) =
(W]xo, | V) = —1/2.

) (33)

A“}vec,j =

C. Combined result for rotation-symmetric cavities

Let us combine the effects discussed up to now, into a
single equation for the fine structure of a plano-concave cav-
ity with a simple spherical mirror. By combining Eqgs. (27)
and (33), we find that the nonparaxial contribution to the
round-trip phase lag is

27 AD ! 1(N2+2N 4) 302y
non = 2TAD = ——| = —4)— =€ —4ts|.
¢ Ry | 8 8

(34)
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This result is identical to the results of Refs. [22] and [23].
For a plano-concave cavity with a nonspherical rotation-
symmetric mirror, the factor 3/8 in Eq. (34) is replaced by
3/8 — PL/[8(Ry — L)], due to spherical aberration and the
polynomial in N is also slightly modified; see Eqs. (29) and
(A1) and identical equation in Ref. [28].

VI. BRAGG (VECTOR) CORRECTION Hpg,ag,

If we replace the ideal mirror by a more realistic Bragg
mirror, the optical field will penetrate in the mirror and the
reflection amplitude will change from a steady r = —1tor =
—explip(w, k1 )] [31,43,44]. The reflection phase ¢(w, k1) =
2kL,(w, k) will now depend on the optical frequency w and
the angle of incidence, which we express via its transverse
momentum & to avoid confusion with the orientation angle 6.
The reflection phase is typically different for TE (s-polarized)
light than for TM (p-polarized) light, because TE light typi-
cally reflects better and thus yields a wider spectral stopband.
The resulting phase difference ¢; — ¢, = C(ky /k)? can im-
pose an additional fine structure on the cavity modes and push
the intracavity field towards radially and azimuthally polar-
ized eigenmodes. Foster et al. [45] have described this Bragg
effect and compared its strength relative to the nonparaxial
vector correction. We will briefly add our thoughts to their
treatment.

First, we note that the phase difference ¢; — ¢, =
C(k, /k)?, effectively also contains a (k, /k)* term because C
depends on (k) /k)* as C(ky) = Cy + Gy (k. /k)? with Cy = 0
in the center of the stopband [31]. Keeping this in mind, we
write the perturbation imposed by the Bragg effect in the two
mirrors as

HBragg = % (kj_ Rk — %ki>, (35)
where the final k% /2 balances the effect to zero for unpo-
larized light. Appendix B calculates Cy and C, from the
properties of the distributed Bragg reflector (DBR). The
(k. /k)* term was not mentioned by Foster et al. [45], but
could be relevant in experiments.

The rotation symmetry of the Bragg operator matches the
rotation symmetry of the vector LG modes. As a result, many
matrix elements (Y |Hprage|¥;) are zero. The only nonzero
on-diagonal elements of the Bragg operator are J' =J = 0.
The Bragg operator will thereby split each pair of J =0
modes in a radially polarized 1A+ mode and an azimuthally
polarized 1A— mode with opposite frequency shifts equal to

C
AVprage. 14+ ~ ik—°<N +1). (36)
20

To arrive at this result, we included only the C, term
of the Bragg effect and used the mean-square opening
angle (k% /k*) = (N + 1)/kzo (see Appendix B). The rela-
tive strength of the predicted Bragg splitting, compared to
the common factor 1/(8wkR,,) for nonparaxial effects, is
Y = (87kRi) AVpragg, 1a+ ~ 16w Co/Ri /L for L < Ry, and
N = 1. Bragg effects become more prominent for cavities
with L <« Ry, because they scale with the mean-square modal
opening angle, which increases if L decreases. The observa-

tion of a 1A + —1A— splitting is a hallmark for the Bragg
effect [28].

Dufferwiel et al. [29] have observed a TE-TM splitting
between the 1A+ and 1A— mode for a cavity filled with an
active semiconductor. They attributed the observed effect to
TE-TM splitting of the polariton eigenstates associated with
two different branches in the semiconductor band structure.
The polariton effect dominates in their experiment, but a rem-
nant of the Bragg effect might also have been present.

As an aside, we note that the £ =1 spectra shown in
Ref. [29] actually comprises three peaks. The frequency
difference between the outer 1A+ and 1A— is due to the
mentioned TE-TM splitting. But the average frequency of
these peaks does not coincide with the frequency of the inner
peak, which must originate from the degenerate 1B+ and 1B—
modes. We think that this additional frequency difference is
due to the spin-orbit coupling described in our Sec. V B.

For J # 0, the Bragg operator has only nonzero off-
diagonal elements that couple (p —1,¢ =J + 1, A) modes
with (p, £ = J — 1, B) modes, both of order N =2p +J — 1
(see Appendixes C and D). The effect of these off-diagonal el-
ements on the fine structure is limited in rotational-symmetric
cavities, because the on-diagonal elements typically differ
a lot and hence dominate. From a physical perspective, we
expect no Bragg-related hyperfine splitting for J # 0 modes
in rotational-symmetric cavities because these modes contain
equal amounts of radial and azimuthal polarization. But even
J # O-type vector modes can exhibit some Bragg-induced hy-
perfine splitting if the cavity is sufficiently astigmatic to mix
the LG modes, that is, modify the eigenmodes, to make them
sensitive to the off-diagonal matrix elements of the Bragg
effect (see Appendix D).

VII. MIRROR-ASTIGMATIC CORRECTIONS
A. Astigmatic correction H ,sigm

In the previous sections, we analyzed the resonances in
a plano-concave cavity with a rotational symmetric and al-
most spherical mirror. In this section we will analyze mirror
deformations that lack rotation symmetry, which are known
as astigmatic deformations. Many concave mirrors are not
rotational symmetric but have slightly different curvatures in
two transverse orthogonal directions, which we will call x and
y. We describe the (paraboloidal component of the) astigmatic
mirror shape as

2 2 2 2 2 2
X y X°+y xT =y
Zmirror (X, ¥) = R + R ~ T + nastinga
x y
(37)

where R = (R, + Ry)/2 = Rpy. The parameter nastigm = (Ry —
R.)/(2R) < 1 quantifies the strength of the astigmatism.

Astigmatism breaks the rotation symmetry and prefers
Hermite-Gaussian modes over Laguerre-Gaussian modes. A
combined treatment of astigmatism and rotational symmetric
perturbation thus requires a matrix description that includes
all relevant modes. As astigmatism also has mirror symmetry
in the (just defined) x axis, it couples only modes with the
same -+ /— mirror character. Each N group is thus expected to
split in two subgroups, the N+ group and N — group.
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If astigmatism would be the only effect, then we would
simply use the HG modes as a basis instead of the LG modes.
Based on the factorization of the HG profiles, we would then
conclude that (1) the HG modes are the eigenmodes of the
astigmatic cavity and (2) the modes in each N group split
into (pairs of) vector HG modes with an equidistant spacing
O Nastigm- But this scalar analysis does not take spin-orbit
coupling into account. To include both effects, we will instead
analyze astigmatism in the basis of the vector LG modes.

We start with the N = 1 group. This group contains four
modes and splits into two pairs: the (A+, B+) set and the
(A—, B—) set. The astigmatic coupling matrix for each of
these sets is (see Appendix C)

- 0 X
Avastigm,(N1)=<X 0), (38)

2 tan
Z (1A 4+ |Az(x, Y)1BH) = Nagigm——2. (39
A 27

X =

This result was checked via integration, using the relation
(Wlr*|¥) = (w?/2)(N + 1) with w? = (AR/m)tan xo. The
eigenvalues of this astigmatic matrix are Ay = +X. The
associated eigenmodes, (A+) =+ (B+), have a cosfé, and
— sin §é, angular dependence. They are the mirror-symmetric
vector HG and H Gy; modes that one expects in the absence
of spin-orbit coupling.

Next, we add the nonparaxial corrections as on-diagonal el-
ements AD; = [g(p, £) — 4L - 5]/ (8w kRy) with g(0, 1) = —2.
We also introduce the relative strength of the astigmatism as
X = 87kRy)X = 2namgmk2wf to remove a common factor.
The final result in the (1B+, 1A+) basis

(87kRm) Aby—1) = <}6 )2(> (40)

combines astigmatism with nonparaxial corrections. The
eigenvalues of this complete matrix are AL = -2+
A/16 + X2, The eigenmodes are of the form [cos Bva +
sin Byg] and [— sin B4 + cos Byg], with mode-mixing an-
gle B = arctan (X/4). This shows that astigmatism increases
the splitting between the nonparaxial modes by a factor
V' 1+ (X/4)?, while gradually changing the A+ and B+
eigenmodes that are visible at X = 0 into the x-polarized
HG( and y-polarized H Gy, eigenmodes for X > 1.

To calculate the astigmatic matrix for any N > 2 group, we
need to find the associated matrix elements. The x?> — y*> =
r? cos 26 angular dependence of the perturbation shows that
the astigmatic coupling obeys the selection rule Al = £2.
Furthermore, astigmatism couples only £ <> (£ + 2) modes
with the same vector label v = {A+, A—, B+, B—}. But astig-
matism can also couple 1A and 1B modes, because the ¢ = 1
modes implicitly also contain —1 modes. Hence, the only
nonzero matrix elements of the astigmatic contribution are

2 -
X<Wp,e:1,A+|AZ(x,y)l‘ﬁp,zzl,m) =X(p+1), @@

2 o N—¢
V120 A2 o) = Xh(N, —) (42)

N Z>, @3)

+ B

2 -
X(I/fpfl,l+2,v|AZ(xvy)h[/p,i,v) = Xh(N, —

were v can be any vector label. The first equation has an
identical counterpart for the — modes. The second equa-
tion assumes £ > 2 and introduces the function h(N, ng) =
J(ng+ 1)(N — ng), which obeys the symmetry A(N,N —
ng) = h(N, ny — 1). These results were again obtained with
the operator algebra described in Appendix C.

Using the results presented above, we can now calculate
the coupling matrix for any nonparaxial astigmatic cavity. We
will show the result only for the N = 2 and N = 3 groups and
leave the general analysis to the reader. The N = 2 group con-
tains 2(N + 1) = 6 members, three with a + mirror symmetry
and three with a — mirror symmetry. The three LG-vector
modes with a + character are the (0+, 2A+, 2B+). The on-
diagonal elements of the spectral matrix are determined by the
nonparaxial correction [g(p, £) &= 4¢] = 2 for the 0 mode, four
for the 2A mode, and —12 for the 2B mode. The off-diagonal
elements are determined by the astigmatism, which couples
the £ = 0 mode with the two £ = 2 modes with an equal
normalized coupling +/2X . This makes the combined spectral
matrix in the (2B+, 0+, 2A+) basis equal to

—12 V2Xx 0
(8TkRyn) ADy=ay = [ vV2X 2 V2X|. (44
0 J2x 4

The three — modes are coupled by an identical matrix that
now operates in the (2B—, 0—, 2A—) basis.

A similar exercise can be done for the N = 3 group, where
the set of + modes are (3B+, 1B+, 1A+, 3A+), yields

20 V3X 0 0

- 3X 0 2X 0
(SJTkRm) AU(N:3) = «/(_) X 8 «/§X
0 0 V3x 4
45

Figure 4 shows the fine structure in the N = 2 group as
a function of the normalized astigmatism X and the associ-
ated eigenmodes. In the absence of astigmatism, at X = 0,
the vector LG 24+ and 2B+ modes have eigenfrequencies
(87kRy,)V = 4 and —12, respectively, while the 0A+ mode
has eigenfrequency 2. At nonzero astigmatism, these three
modes mix and gradually transform from LG to HG modes,
while their eigenfrequencies also change. At X = 10, where
astigmatism dominates over nonparaxial effects, the eigen-
modes strongly resemble the HG modes and the distance
between the eigenvalues becomes approximately equal. The
three asymptotes show the eigenfrequencies —4 and —1 + 2X
that are reached at X >> 1. The depicted transition from dom-
inant nonparaxial effects to dominant astigmatic effects in an
optical microcavity resembles the transition from dominant
spin-orbit coupling to a dominant Zeeman effect in atomic
physics.

B. Shape birefringence

In the previous section, we stated that the coupling matrices
of the + and — modes are identical. We will now show that
these matrices can be slightly different on account of a second-
order effect that combines astigmatism with the nonparaxial
vector correction. The associated anisotropic spin-orbit cou-
pling results in shape birefringence, i.e., it induces a frequency
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FIG. 4. Sketches of the polarization profile for the “+” modes of the N = 2 group, as a function of the normalized astigmatism X. The

eigenmodes on the right correspond (column-wise) to X = 0, 2, 4, 10.

difference between x- and y-polarized light, just as birefrin-
gence would, but only because of the x/y difference in the
shape of a mirror. The story is as follows.

The vector correction in Eq. (31) uses the transverse deriva-
tive V, - ¥ 1 (#) to calculate a small additional field, which is
projected onto a radial transverse field via multiplication with
0/Rn. Butin a cavity with an astigmatic mirror, the projection
should instead be on

B Py P P S
1?1 + IT; == + nasﬁgmi(cos 0é, — sin 0&,). (46)

The first term in this equation describes the vector correction
discussed in Sec. V. The second term described the astigmatic
component of this vector correction.

The anisotropic vector correction can again be calculated
via integration or operator algebra. For £ = 0 modes, the
resulting on-diagonal matrix elements yield

- Nastigm

Abyra =F 22 @7)
where the — sign applies to the 4+ mode and vice versa
and where Eq. (47) applies to all £ = 0 modes, irrespective
of the radial quantum number p. The same result can be
obtained by interpreting the vector correction of Eq. (33)
as AV = —1/(2nkR,) for the x-polarized mode with R, =
R(1 + Nastigm)- For £ > 1 modes, the anisotropic spin-orbit
coupling has only nonzero off-diagonal elements (see Ap-
pendixes C and D). As a result, these modes typically
experience hardly any shape birefringence and retain their +
or — degeneracy in cavities with small astigmatism. Some
hyperfine splitting might, however, still be present in cavities
where the astigmatism is strong enough to mix the vector LG
modes.

VIII. DISCUSSION AND RESIDUAL H st

The analysis presented above describes the most common
perturbations in optical cavities, but is unavoidably incom-
plete. We included the quartic scalar corrections ki and r*,
the spin-orbit and Bragg vector correction, and astigmatic

deformations of the form (x> — y?), but the concave mirror
might also be deformed in different ways. We will combine
all residual mirror deformations in the scalar operator Hess =
ZkAZrest << 1~

The residual operator H.s Will scatter light and couple
modes, just like the other operators do. And this coupling
will again mainly be effective between modes with the
same transverse order N if the cavity is operated far from
frequency-degenerate points. The effect of H,.s on the spec-
tral fine structure and the associated eigenmodes is then
completely described by the residual spectral matrix Ab; ; =
(¥ | Hrest| ;). In principle, knowledge of the spectrum and
eigenmodes of a specific order N allows one to reconstruct
the full coupling matrix Hgpe of that order and disentangle its
contributions. The accuracy of such an analysis is limited only
by the cavity finesse, which makes it an extremely sensitive
probe of the actual mirror shape. Benedikter ef al. [25] have
previously used the resonances around frequency-degenerate
points as a similar sensitive probe for the topography of their
planar mirror.

The eigenmodes of the spectral matrix will provide a better
match with the deformed mirror than the original LG modes,
but the match is typically not perfect. The resulting modal loss
per round trip can be calculated from the next term in the Tay-
lor expansion of exp(—2ikAz) ~ 1 — i2kAz — 2k* Az>. The
calculated amplitude loss

Vextra & 2K / / dxdy [Az(x, )1 1Y (x, )2, (48)

with AZ = Zmirror — Zmode, Yields the well-known expression
(4mo /1) with 02 = (AZ?) for the intensity loss [46]. A finite
mirror radius ryax Will add clipping amplitude loss

o0
Vetoping ~ / e dr [y ()R, 49)

max

where |1/ (r)|? is the rotational-averaged intensity profile.

At first sight, it might be surprising that height variations
introduce modal loss in a system that was assumed to be
lossless. But any submatrix H of the system is bound to be
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non-Hermitian even when the full dynamic matrix is Her-
mitian. The residual loss originates from coupling between
modes with different order N, which will increase the mode
size beyond reasonable bounds and thereby result in clipping
loss. Even when the coupling between individual modes is in-
efficient, the multitude of available coupling channels creates
the residual loss described by Eq. (48).

IX. SUMMARY AND OUTLOOK

This paper calculates the resonance frequencies and eigen-
modes of a planar-concave cavity beyond the common
paraxial limit and beyond the spherical mirror shape. It does
so by describing the round-trip dynamics of the intracavity
field in a 3D Fabry-Perot (FP) cavity in a general operator
formalism, which reduces to a modest-size matrix description
after the application of perturbation theory. It then shows that
the 2(N + 1) modes with the same longitudinal order ¢ and
transverse order N are not frequency degenerate, as predicted
by a paraxial theory, but split. The associated optical fine
structure has many contributions, which are listed in Table I
and calculated in the beginning of this paper.

The paper presents a complete theoretical framework for
the expected optical fine structure, by systematically analyz-
ing all contributions that can realistically be expected. For
cavities with rotation and mirror symmetry we basically re-
cover the results of Refs. [22] and [23], albeit often in easier
forms. This analysis, which is presented in Secs. IV and V,
includes contributions from nonparaxial propagation, two as-
pherical corrections, and spin-orbit coupling. In the final two
sections we analyze the fine structure of more general cavi-
ties. This results in four additional contributions: (1) a Bragg
correction to quantify the role of the Bragg mirror, (2) an
astigmatic correction to quantify the effect or an astigmatic
mirror, (3) an anisotropic spin-orbit coupling in astigmatic
cavities, and (4) a residual correction, which was discussed
only in general terms. In experiments, the astigmatic correc-
tion is expected to be an important technical complication that
can easily dominate over the more fundamental nonparaxial
corrections. The paper introduces a dimensionless parameter
X to compare these effects and predicts how the fundamental
effects are more likely to dominate in short cavities with
mirrors with small radii of curvature. A second dimensionless
parameter Y compares the strength of the Bragg effect relative
to the more fundamental nonparaxial corrections. Most of the
predicted effects have been observed in recent experiments on
the fine structure of microcavity spectra [28].

The optical fine structure in FP spectra resembles the
fine structure in atomic spectra. The energy levels in atomic
physics depend primarily on the principal quantum number
n, but exhibit a fine structure that is an order o® smaller,
where o & 1/137 is the fine structure constant [27]. In com-
parison, the optical resonances in FP spectra are primarily
determined by the two principal quantum numbers (g, N). The
relative strength of the optical fine structure A is of the order
1/(8wkRy) < /Ry, where Ry, is the radius of curvature of
the curved mirror.

The results presented in Table I describe the nonparaxial
effects in a plano-concave cavity with mirror spacing L and
mirror radius Ry,. These results can easily be generalized to an

arbitrary cavity with two mirrors with radii R; and R, using
the following procedure: (1) use paraxial optics to find the
waist and the distances L; and L, from the mirrors to this
waist, (2) use Table I to determine the various contributions
t0 @non,1 for the optical path from the waist to Mirror 1 and
back, (3) repeat this step for Mirror 2 to find @,on 2, and (4)
add the two results to find the nonparaxial round-trip phase
lag @non = @non.1 + ¢Pnon.2. For a symmetric biconcave cavity
of length 2L, one thus finds that (1) ¢y, is twice as large as in
a plano-concave cavity of length L, (2) the relative frequency
shift AD is also twice as large, but (3) the absolute frequency
shifts Av are equal, as expected.

The analysis presented in this paper neglects losses. This
assumption is valid for cavities with sufficiently large high-
reflective mirrors, such that the cavity resonances are clearly
resolved in the optical spectrum. The influence of loss on the
spectral resonances is probably limited to detunings AD <
1/F and therefore small for finesses F > 10R/A, where the
factor 10 was added to compensate for a factor 1/(kRy) <
0.1 in Eq. (34). A measurement of the modal finesses, and the
associated clipping losses at finite-size mirrors, can however
be useful to further characterize the individual modes.

Our analysis predicts that most modes appear in frequency-
degenerate pairs, with polarization patterns of the form A+ or
B+ for the £ > 1 modes and x or y polarization for the £ = 0
modes. It also predicts that this twofold degeneracy will be
slightly broken for some pairs by effects that one might thus
call hyperfine splitting. This paper quantifies two effects and
shows that (1) the £ = 1, A pairs split in modes with radial and
azimuthal polarization in cavities with Bragg mirrors and (2)
the £ = 0 mode pairs exhibit a small second-order splitting
in astigmatic cavities. It also argued how the degeneracy of
other mode pairs can be slightly broken in strongly astigmatic
cavities, due to admixture of HG character in the vector LG
modes that are preferred by spin-orbit coupling. All these
hyperfine splittings have been observed in recent experiments
[28].

We speculate that the pairwise degeneracy can also be bro-
ken when the mirror symmetry is broken, for instance when
one mirror has a twist [47,48], or a higher-order astigmatism
of the form x’* — y"* with an x'y’ orientation different from the
xy orientation of the prime astigmatism. And mirror symmetry
is obviously broken in cavities with chiral stuctures, like the
ones recently reported in Ref. [49].

As a further outlook, we note that the optical fine structure
contains information on the mirror shape down to sub-nm
precision. It can thus in principle be used to inspect these
shapes, without the need to dismount the mirrors and inspect
them by AFM or optical interference.

In future work, the analysis could be extended by including
the other, C, or k*, Bragg effect. This effect was neglected in
most of the analysis, but the example presented in Appendix B
shows that this simplification is not always correct.

The analysis could also be extended by including
the coupling between modes of different N groups. The
latter coupling is typically small but will become important
around so-called frequency-degenerate cavity lengths, where
the Gouy phase xo is a rational fraction of 7w and modes
with different (g, N) numbers become frequency degenerate.
The resulting modified eigenmodes can potentially lead to
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a reduction in mode area and an increase the light-matter
interaction [37]. The analysis could also be extended to opti-
cal cavities with different geometries, beyond the two-mirror
plano-concave type. The theoretical framework developed in
this paper is general enough to also analyze these related
geometries in a perturbative way.

Finally, it might be interesting to compare the presented
analysis with the geometric approach to cavity aberration
presented in a recent publication of Jaffe et al. [50]. Or to com-
pare the presented analysis of mode formation in open optical
cavities with the analysis of mode formation in rotational-
symmetric graded-index optical waveguides/fibers presented
in Ref. [51]. We leave these topics as challenges to the reader.
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APPENDIX A: COMPARISON WITH ZEPPENFELD
AND PINKSE

This Appendix summarizes the key results of Zeppenfeld
and Pinkse [23] and compares them with the associated non-
paraxial effects listed in Table I. We will transform their
results to our notation for the specific case of a plano-concave
cavity.

Zeppenfeld and Pinkse [23] label their vector LG modes
with quantum numbers (v,J,oy). Zeppenfeld’s quantum
number v is equal to our radial quantum number p. Zep-
penfeld’s quantum number J denotes the total angular
momentum. As such, it combines our radial quantum number
£ with a vector quantum number s = %1 for circularly polar-
ized o4 light. Their v = {J, 0.} mode is a superposition of our
B, and B_ modes with £ = J — 1. Their v = {J, o_} mode is
a superposition of our A, and A_ modes with ¢ = J + 1.

Equation (40) of Ref. [23] states that the round-trip phase
of the (v, J, 0T) mode is

2
Oy1o+ =2kL —2Q2v 4 J)arctan&; — —v(v 4+ J)
v kR

& (1 L
“ra(z—mC4>[6v(V+J)+J(]+1)].
(A1)

To arrive at Eq. (A1), we combined Zeppenfeld’s expansion
parameter 1/c =2/(kd), with d = 2z, with equations that
are specific for plano-concave cavities, like &, = 2L/d,
£/[c(1+ &3] =1/(kRy), and fi, = (2RALEs — )&, and
Rayleigh range zop = /L(Ry — L). The parameter ¢4 de-

scribes the deviation from a paraboloidal mirror shape and is
related to the parameter p in the main text viaéqs = 1 — p.

The first term on the right-hand side of Eq. (Al) is the
plane-wave round-trip phase. The second term is the phase
lag predicted by paraxial theory. The third and fourth terms
in Eqgs. (Al) describe the spectral fine structure in Zeppen-
feld’s notation. We rewrite this in our notation by writing
J=40+s for £ >0, with J =€+ 1 for o, polarization,
2v +J = N + 1 with transverse order N = 2p + ¢, and by
introducing the fundamental Gouy phase xo = arctan& =
arctan /L/(Rn — L). We recover the equivalent equation in
our notation:

Pp.eot =2kL —2(N + 1)x0 = ¢non, ~ With

_ L[la\ﬂ LN —dy— 20— ZS] (A2)

ron = R | 8 8 '
This final result includes a rewrite of Eq. (41) of Ref. [23] and
is therefore valid for modes with both types of polarization. It
applies only to a plano-concave cavity with spherical mirrors
(¢4 = 1 in Zeppenfeld’s notation), but can be extended to
aspherical mirrors by replacing the factor 3/8, in front of the
€2 term, by 3/8 — pL/[8(Ry — L)] and by slightly modifying
the function of N. Equation (A2) is identical to Eq. (34), and
to Eq. (29) in Ref. [22].

APPENDIX B: BRAGG CORRECTION IN DETAIL

This Appendix analyzes the polarization dependence of the
reflection phase of a DBR and the resulting Bragg correction
Hprage. The reflection phase of a DBR

Ps.p(@, @) =2kLy(w, §) = [ — wc(P)]Ts p(¢)  (BI)

depends on the detuning [w — w.(¢)] between the opti-
cal frequency and the center of the stopband and on the
(polarization-dependent) phase penetration depth L ,(¢p) =
¢Ts p(¢)/2 in the DBR. Both quantities depend on the angle
of incidence ¢ = k, /k < 1 as [43,44]

s /1 1
wc(¢) ~ w(0)(1 + Bop~); B = —(n—2 + —2> (B2)
L

4 ng

ts,p(¢)%f(0)(1iA¢2);A=1(1+ : > (B3)
2 ngny

where the + sign in Eq. (B3) applies to p-polarized light, with
its reduced Fresnel reflection and reduced stopband width,
and the — sign applies to s-polarized light. Equation (B2)
is the generic result of a Taylor expansion of Snell’s law.
Equation (B3) is valid only for H-DBRs, i.e., DBRs that start
with the high-index ny > n; layer on the air side (ny,, = 1).
By combining these expansions with the H-DBR result
w:(0)t(0) = 7 /(ny — ny) [31,43,44], we find

2 [0 — w:(0)] _ 2
AP { w(0) Be }
(B4)

This polarization-dependent reflection at k; # O creates
the Bragg correction introduced in Eq. (35), which reads

20k, (- - 1
Hirage = — 5 (kl ®k ~ 5/{), (BS)

Pp(@) — ¢5(p) =

ng —np
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with C(k,) = Cy + C>(k. /k)? and
2rA o —w(0)
w:(0)

The factor 2 in Eq. (B5), which indicates that there are
two reflections, is only approximately 2, because the angle-
dependent reflection from the curved mirror and flat mirror are
similar only in the short-cavity limit L < Ry,. The “quadratic
Bragg effect,” quantified by Cy, depends critically on the fre-
quency detuning. The “quartic Bragg effect,” quantified by C,,
does not and could thus even become dominant around the
center of the stopband. The “quadratic Bragg effect” has on-
diagonal elements only for the j = j/ = 1A+ modes, where

—2wAB
2= .

0= (B6)

ng —ng ng —ng

C
Wﬁ%@w=iﬁw+u (B7)
20

and where we used (¢2) = (sz_/kz) = (N + 1)/kzp.

For a typical DBR coating of SiO, (n;, =~ 1.46) and
TayOs (ny &~ 2.09), and a typical relative detuning [w —
®:(0)]/w:(0) of 1%, we find Cy ~ —0.13, while C, ~ 2.3 at
any detuning. To calculate the associated polarization shifts,
these values should be multiplied by (¢?) = (k? /k*) = (N +
1)/kzo and (¢*) = f(p, £)/(kzo)*. For a typical microcavity
with L =2 um, R = 20 um and A = 0.63 um, the rms open-
ing angle of the fundamental mode is /{¢?2) ~ +/0.016 ~
0.13rad. For the 1A+ and 1A— modes, this results in fre-
quency shifts A of £Cy(¢?)/(2m) = F6.6 x 10~* due to the
1% detuning and +C,(¢*)/(27) = £5.6 x 10~ due to the
quartic correction. These numbers show that the Bragg cor-
rection is typically small at small detuning, where the quartic
effect cannot be neglected. But the Bragg correction should be
observable, in particular at larger frequency detuning.

For L-DBRs, i.e., DBRs that start with an n;, layer on the
air side, two parameters are different [31,43,44]. The product
w:(0)t(0) = npnym /(ng — ny) is larger than for H-DBRs,
but the polarization factor in Eq. (B3) is now typically smaller
and given by

AL = L2 + ! + ! 1 (B8)
L=2 n,zi n,2_ nyny, '
For L-DBRs we thus find the modified equations,
27A  w — w.(0) _ —2nAB

Cy = , G = , B9
T —ny w:(0) T —ny ®)

with

~ 1
A:anLAL:—<1+n—L+n—H—anL). (BlO)
2 ny ny,
For the Si0,/Ta, 05 example discussed above, the I:—DBR is
expected to show a smaller Bragg effect as it has A = 0.08,
while the H-DBR has A = 0.66.

APPENDIX C: OPERATOR ALGEBRA

This Appendix introduces ladder operators for the scalar
LG modes and shows how they can be used to calculate the
matrix elements of the perturbing operators. It also shows how
these concepts can be applied to vector LG modes, including

the X /Y /A/B modes introduced in the main text. We will con-
sider only coupling between modes with the same transverse
order N, such that the wavefront curvature and Gouy phase
drop out of the problem.

In Cartesian (x, y) coordinates, with normalized coordi-
nates (&, n) = (x,y)/y,, we define the creation and annihila-
tion operators in the £ direction as [53]

1 1
fls(x)=—2(€+3s), a;(x)=—7E—-09) (CI)

V2 V2
and likewise for the n direction. These ladder operators al-
low one to ladder through the set of scalar HG modes. As
our system is approximately rotational symmetric, it is more
convenient to work with cylindrical coordinates (p, ) and the
circular ladder operators
L= i(ag Fia,), a = L(aT +iah). (C2)
V2 nh + N n

IS}

These ladder operators satisfy the commutation relation
la;, 21]"] = §;; and combine into number operators i, = 21154
and i_ = &' a_. They allow one to ladder through the set of
scalar LG modes, using the relations [53]

Vniin N, ) = @)@ |¥o),  (C3)

E W, 0 ) =7 f0(p), (C4)

where | o) is the fundamental mode. The final equation pro-
vides the link to the modes used in the main text. We have
added a tilde to the notation to indicate that these LG modes
are labeled with quantum numbers n; and n_. The relation
with the quantum numbers used in the main text is p =
min(ny,n_) and £ = ny —n_, where the latter can still be
positive or negative.

Next, we will express each perturbing operator as com-
binations of ladder operators and calculate the matrix
representation of these operators in the basis of the LG modes
of transverse order N. Using the ladder operators introduced
above, we can for instance rewrite the paraxial form ,02 =
§2+n2andAL=8§+8$as

P=W0+D+aa +aal, (C5)

Al=-N+1D+aa +ala, (C6)

where N = iy +A_. When we sandwich the operator p?
between two LG modes of order N, the first term yields
the familiar expression (\Ilj/|,2)2|\ilj) = (N + 1)§;;, while the
second and third terms do not contribute as they couple only
modes with different order.

The quartic nonparaxial operators yield expressions with
more terms. When we keep only the operator combinations
that couple modes of the same order N, we find that the quartic
nonparaxial operators are diagonal in the LG basis with

(F1p0;) = (N+ 12+ N+ 1+2n,n_ = f(p,£), (CT)

where j = (ny,n_), and an identical result for (‘i/j|Ai|\I/j).
The final expression shows the link to the quadratic polyno-
mial f(p, £), used in the main text.

The astigmatic operator £2 — 7> = &1&_ + &T_&Jr simul-
taneously lowers n; and raises n_ by one, and visa versa,
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and can therefore couple modes of the same order N with
Al = £2. More precisely,

E* =y, 0 ) =V (e + D |V, 1, 1)
+ Vv n+(n_ + 1)|\I’n+—1,n,+l)-

When we label the scalar modes with a single quantum num-
ber ny = ny, making n_ = N — ng, the only nonzero elements
of the astigmatic operator are

E* = P, = E* = 11 = h(N, ng),  (C9)

where the function A(N, n;) = +/(n; + 1)(N — ny) obeys the
symmetry h(N, N — ng) = h(N, ng — 1).
Next, we introduce the vector modes via

(C8)

-

(W) =é [Wy) +e V), (C10)

where €4 = (é; £ iéy)/ V/2 are the circularly polarized unit
vectors and where |V, ) are scalar mode profiles. We write
these vector modes as vectors of two scalar modes and de-
scribe the action of any tensor operator H by the associated

2 x 2 tensor that acts via
<’H++ H+_> (I%))
Hor H__J\U¥v_))
We will consider three vector corrections: (1) the isotropic
spin-orbit coupling, (2) the anisotropic spin-orbit coupling,
and (3) the Bragg effect.

The most prominent vector correction is the isotropic spin-
orbit coupling described by the operator Hyee = 2/(kRy) p @
ﬁp. The 2 x 2 matrix representation of the operator p ®
ﬁp contains the combinations {& 0, £ Oy, N0g, N0y} in the
linear-polarized (&, n) basis. Expression in the circular lad-

der operators and the circularly polarized form defined in
Egs. (C10) and (C11) yields

-1 (14+n, —n_ 0
M 0 l—ny+4+n_J)°
In this conversion, we removed combinations of operators that
projects only to modes of different order N, like the operators
£de + 1 = 3[a7 — (a]))"], agay, and ajaj.

Application of Hye to the righthand circularly polarized
modes yields

(C11)

Hyee = (C12)

Los 1+7_ .
Heee €+|“I’n+,n_> = kR, e+|“pn+,n_>7 (C13)
where 7 = n, — n_, with associated matrix elements
14+¢ 1+2n,—N
((Hvec)-H—)ns,ns = - = - . (C14)

kRm kR,

The middle part of Eq. (C14) is identical to Eq. (33), where
the signed ¢ = ¢ depends on n, < n_. The right side of
Eq. (C14) introduces n, as the circular quantum number along
the spin direction, such that ng = n, for s =1 and ny, = n_
for s = —1. With these definitions, the only nonzero matrix
elements of (Hyec)__ are

1-¢  1+21,—N
kRyn kRy,

(Hvec)——ngn, = (C15)

The anisotropic component of the spin-orbit coupling fol-
lows from the Taylor expansion

Xé, n & ® %l Xé,y —tyey e
kR, kR, kR
Xéx — yé, >
+ Nastigm (%) ® Vi,
(C16)

where R = (R, + R;)/2 = R, MNastigm = (R, — R,)/R. The
first operator on the right-hand side is Hyec/2. The sec-
ond operator describes the anisotropic spin-orbit coupling
Hy+a/2. The 2 x 2 matrix representation of this operator in
(&, n) coordinates and polarization contains the combinations
(€ ¢, £ 0y, —10, —19,}. Conversion to the circularly polar-
ized vector basis yields

HVJra _ —Nastigm ( 0 1-— ny +n_

e s —n ] ) (C17)

The off-diagonal elements show how this operator converts
s = 41 < s = —1 circularly polarized light. Application of
Hy+a to the righthand circularly polarized modes yields

Nastigm

Hv+a E+|"‘pn+,n7> = - kR
m

I+ e W, . ).

(C18)

This equation differs in two ways from Eq. (C13). First, the
extra factor 7,gigm shows that anisotropic spin-orbit coupling
is linked to astigmatism. Second, the ., operator changes
the handedness of the circular polarization. As a result the pro-
jected circular quantum number changes from ng;, = ny to
ng.out = N— = N — n,. The associated matrix in the circularly
polarized basis therefore only has antidiagonal elements

Nastigm

((Hv+a)—+ )N—ns,nj = kRm

(1+2n;, —N), (C19)

where the first mode label refers to n_. = N — n, and the
second mode label refers to n. = n;. A similar analysis for
the left-hand circularly polarized modes yields the identical,
Hermitian-conjugated, result

Nastigm
(Hyra) s IN-nom, = ——E2 (1 4 21, — N).

C20
KR, (C20)

As final vector correction we consider the Bragg effect de-
scribed by Eq. (35). We will consider only the k3 contribution
to the Bragg effect and neglect the k% contribution, which is
typically weaker but can still be relevant at small frequency
detuning. In the linearly polarized basis and x, y units used in
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the main text, the quadratic part of the Bragg operator has the
form

C 2 1.2
0<kx K 2kxky> ©1

HpBrage = = 2kk, k)2, — k)% ’

where k, = id, and k, = id,. Conversion to normalized coor-
dinates and to the preferred circularly polarized vector basis

yields
2C AT A
Hirage = 20 ( 0 aa+>'

22
kzo a+a, 0 (€22)

The off-diagonal elements show how this operator also con-
verts s = +1 <> s = —1 circularly polarized light. It does so
under conservation of total angular momentum J = £ + s,
such that Al = Any — An_ = £2.

Application of Hp,g to the righthand circularly polarized
modes yields

o 26, o
HBragg e+|"pn+$n,> = E h(N, ny) e—|lpn++l,n,—l>~
0

where h(N, ng) = /(ny; + 1)(N — ng) as before. The pro-

jected circular quantum number now changes from g i, = n
to ngou =n- —1 =N —ny— 1 and the associated matrix
has only elements one row below the antidiagonal, with

2C

= h(N, ny).
kzo
A similar analysis for the left-hand circularly polarized modes
again yields identical matrix elements for (Hpragg)+—, due to
our use of projected indices.

(C23)

[(HBragg)— (C24)

+]N—nl—1,ns =

APPENDIX D: HYPERFINE SPLITTINGS

In the main text. we introduced a special set of vector LG
modes that we labeled by their absolute OAM ¢ > 0, their
X, Y, A, or B character, and their & polarity under x mirror
reflection. The link between these vector LG, modes and the
scalar LG modes in Eq. (C3) is

€A+) = V2Re[ 2y [V )], (D1)
A=) = V2Im[ ;[P no)], (D2)
[0B+) = fRe[amf e, (D3)
€B—) = V2Im[ &, |Wuy s0)], (D4)

where Re and Im denote the real and imaginary part, with
€y =¢é¢_and |\I/¥,%)* = |\TJ%,¥). Equations (D1)-(D4)
show that A modes are like B modes with signed OAM £ =
—¢ instead of £ = ¢ in the &, component of their vector field.
The ¢ = 0 modes obey the relations |0+) = |0A+) = |0B+)
and |0—) = |0A—) = |0B—). We again note that our +/—
label refers to the polarity under x-mirror reflection, i.e., not
to any circular polarization, and that we use only £ > 0.
Appendix C showed that two vector corrections can change
the handedness of the light, via nonzero operators H,_ and
‘H_+, and thereby couple the circularly polarized modes. The
vector LG modes are now the true eigenmodes of the per-
turbed cavity, as the two vector corrections that we considered

are symmetric under x-mirror reflection and hence cannot
couple 4+ and — modes. The two vector corrections can lift
the original two-fold degeneracy of some vector LG modes,
though, and create a hyperfine splitting between the + and —
versions of some £A or £B modes.

Application of H,, to the vector LG modes yields

77ast1é,m

Husa |CAS) = £-28

(£ —1) |£Bt), (D5)

= i”‘““g“‘ (=0 — 1) [LA+).

vta [€Bx
H +a | ) kRm

(Do)

For ¢ =0, the H,;, operator has on-diagonal element
—Nastigm/ (kR ) for the |04) modes and 7astigm /(KR ) for the
|0—) mode. This difference creates the hyperfine splitting of
the £ = 0 modes described in the main text. For £ > 1, the
Hy+a Operator has off-diagonal elements that couple |[fA+) to
[¢B=) in an asymmetric way; see Egs. (D5) and (D6).
Application of Hprag to the vector LG modes yields

C N+ ¢

Hprage|(BE) = j:—oh<N T+> (€ + 2)A), (D7)
Z
2C N—¢

Hprage|0AL) = :l:—oh<N T) (¢ — 2)B+). (D8)

The £ =1 case of Eq. (D8) corresponds to Hprage|[(AE) =
+Co(N + 1)/(kzp)|€Ax), if we interpret the mode |—
1, B, £) = |1A£). This creates the hyperfine splitting be-
tween the 1A+ and 1A— mode described in the main text. The
£ =0 cases of Egs. (D7) and (D8) are identical as |0+) =
|0A+) = |0Bt).

To visualize the obtained results, we end by deriving the
full H44+ and H__ matrices in the vector LG-mode basis
for the N =1 and N =2 subspace. We quantify the rel-
ative strength of the astigmatism with the parameter X =
(8 kR )Nastigm tan xo/(2) used in Sec. VII A and add the
two polarization-changing effects mentioned above. In the
normalized units used below, the on-diagonal elements of the
spin-orbit coupling are —4( + 1), with £ = £ for B modes
and ¢ = —¢ for A modes. Furthermore, the antidiagonal ele-
ments associated with the anisotropic spin-orbit coupling are
T4 + DNastigm; see Egs. (D5) and (D6). In the same units,
the matrix elements of the Bragg correction are of the form
+Yh(N, ny); see Eqs. (D7) and (D8) and below Eq. (36). Com-
bination of these contributions for the N = 1 group changes
Eq. (40) into

BmkRy) AVn=1) = (X F 8Nastigm 2 E Y)’ 2

where the upper signs describe the spectral matrix of
the (1B+, 1A+) modes and the lower signs that of the
(1B—, 1A—) modes. The £Y on-diagonal element describes
the hyperfine splitting of the 1A+ modes. The off-diagonal
elements X = 2nastigmk2w% describe the coupling between the
vector LG modes due to astigmatism. The additional term
F8nasiigm can create hyperfine splitting in strongly astig-
matic cavities, but this effect is typically very small when
Nastigm << land X « 2 — (—6) = 8.
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For the N =2 group, the hyperfine splittings change
Eq. (44) into

(SﬂkRm) A ﬁ(N=2)

—12 «/EX :l:477astigm
= V22X 2 F Magtigm V2X £V2Y |,
Fl 277el.stigm ﬁx =+ \/EY 4

(D10)

where the upper and lower signs refer to the (2B+, 04, 2A+)
and (2B—,0—,2A—) basis, respectively. The F4nasigm

on-diagonal element describes the (typically small) hyper-
fine splitting between the 0+ and 0— modes due to shape
birefringence. The ++/2Y off-diagonal elements describe the
(typically small) Bragg effect. These off-diagonal elements
will produce a measurable hyperfine splitting only if they are
strong enough or if the cavity is strongly astigmatic, where
the mode mixing induced by the off-diagonal +/2X element
creates eigenmodes that are more sensitive to the Bragg effect
and other, astigmatic, off-diagonal elements of the spectral
matrix. The Bragg-induced hyperfine splitting is expected to
be stronger for the 0 and 24 modes than for the 2B modes.
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