1,709 research outputs found
Product formula related to quantum Zeno dynamics
We prove a product formula which involves the unitary group generated by a
semibounded self-adjoint operator and an orthogonal projection on a
separable Hilbert space \HH, with the convergence in
L^2_\mathrm{loc}(\mathbb{R};\HH). It gives a partial answer to the question
about existence of the limit which describes quantum Zeno dynamics in the
subspace \hbox{}. The convergence in \HH is demonstrated in
the case of a finite-dimensional . The main result is illustrated in the
example where the projection corresponds to a domain in and the
unitary group is the free Schr\"odinger evolution.Comment: LaTeX 2e, 24 pages, with substantial modifications, to appear in Ann.
H. Poincar
Non-Weyl asymptotics for quantum graphs with general coupling conditions
Inspired by a recent result of Davies and Pushnitski, we study resonance
asymptotics of quantum graphs with general coupling conditions at the vertices.
We derive a criterion for the asymptotics to be of a non-Weyl character. We
show that for balanced vertices with permutation-invariant couplings the
asymptotics is non-Weyl only in case of Kirchhoff or anti-Kirchhoff conditions,
while for graphs without permutation numerous examples of non-Weyl behaviour
can be constructed. Furthermore, we present an insight helping to understand
what makes the Kirchhoff/anti-Kirchhoff coupling particular from the resonance
point of view. Finally, we demonstrate a generalization to quantum graphs with
nonequal edge weights.Comment: minor changes, to appear in Pierre Duclos memorial issue of J. Phys.
A: Math. Theo
On the spectrum of a bent chain graph
We study Schr\"odinger operators on an infinite quantum graph of a chain form
which consists of identical rings connected at the touching points by
-couplings with a parameter . If the graph is "straight",
i.e. periodic with respect to ring shifts, its Hamiltonian has a band spectrum
with all the gaps open whenever . We consider a "bending"
deformation of the chain consisting of changing one position at a single ring
and show that it gives rise to eigenvalues in the open spectral gaps. We
analyze dependence of these eigenvalues on the coupling and the
"bending angle" as well as resonances of the system coming from the bending. We
also discuss the behaviour of the eigenvalues and resonances at the edges of
the spectral bands.Comment: LaTeX, 23 pages with 7 figures; minor changes, references added; to
appear in J. Phys. A: Math. Theo
Quantum contact interactions
The existence of several exotic phenomena, such as duality and spectral
anholonomy is pointed out in one-dimensional quantum wire with a single defect.
The topological structure in the spectral space which is behind these phenomena
is identified.Comment: A lecture presented at the 2nd Winter Institute on Foundations of
Quantum Theory and Quantum Optics (WINST02), Jan. 2-11, 2002, S.N.Bose
Institute, Calcutta, India: 8 pages latex with Indian Acad. Sci. style fil
Leaky quantum graphs: approximations by point interaction Hamiltonians
We prove an approximation result showing how operators of the type in , where is a graph,
can be modeled in the strong resolvent sense by point-interaction Hamiltonians
with an appropriate arrangement of the potentials. The result is
illustrated on finding the spectral properties in cases when is a ring
or a star. Furthermore, we use this method to indicate that scattering on an
infinite curve which is locally close to a loop shape or has multiple
bends may exhibit resonances due to quantum tunneling or repeated reflections.Comment: LaTeX 2e, 31 pages with 18 postscript figure
A single-mode quantum transport in serial-structure geometric scatterers
We study transport in quantum systems consisting of a finite array of N
identical single-channel scatterers. A general expression of the S matrix in
terms of the individual-element data obtained recently for potential scattering
is rederived in this wider context. It shows in particular how the band
spectrum of the infinite periodic system arises in the limit . We
illustrate the result on two kinds of examples. The first are serial graphs
obtained by chaining loops or T-junctions. A detailed discussion is presented
for a finite-periodic "comb"; we show how the resonance poles can be computed
within the Krein formula approach. Another example concerns geometric
scatterers where the individual element consists of a surface with a pair of
leads; we show that apart of the resonances coming from the decoupled-surface
eigenvalues such scatterers exhibit the high-energy behavior typical for the
delta' interaction for the physically interesting couplings.Comment: 36 pages, a LaTeX source file with 2 TeX drawings, 3 ps and 3 jpeg
figures attache
Sufficient conditions for the anti-Zeno effect
The ideal anti-Zeno effect means that a perpetual observation leads to an
immediate disappearance of the unstable system. We present a straightforward
way to derive sufficient conditions under which such a situation occurs
expressed in terms of the decaying states and spectral properties of the
Hamiltonian. They show, in particular, that the gap between Zeno and anti-Zeno
effects is in fact very narrow.Comment: LatEx2e, 9 pages; a revised text, to appear in J. Phys. A: Math. Ge
Spectrum of the Schr\"odinger operator in a perturbed periodically twisted tube
We study Dirichlet Laplacian in a screw-shaped region, i.e. a straight
twisted tube of a non-circular cross section. It is shown that a local
perturbation which consists of "slowing down" the twisting in the mean gives
rise to a non-empty discrete spectrum.Comment: LaTeX2e, 10 page
Lieb-Thirring inequalities for geometrically induced bound states
We prove new inequalities of the Lieb-Thirring type on the eigenvalues of
Schr\"odinger operators in wave guides with local perturbations. The estimates
are optimal in the weak-coupling case. To illustrate their applications, we
consider, in particular, a straight strip and a straight circular tube with
either mixed boundary conditions or boundary deformations.Comment: LaTeX2e, 14 page
Schrödinger operators with δ and δ′-potentials supported on hypersurfaces
Self-adjoint Schrödinger operators with δ and δ′-potentials supported on a smooth compact hypersurface are defined explicitly via boundary conditions. The spectral properties of these operators are investigated, regularity results on the functions in their domains are obtained, and analogues of the Birman–Schwinger principle and a variant of Krein’s formula are shown. Furthermore, Schatten–von Neumann type estimates for the differences of the powers of the resolvents of the Schrödinger operators with δ and δ′-potentials, and the Schrödinger operator without a singular interaction are proved. An immediate consequence of these estimates is the existence and completeness of the wave operators of the corresponding scattering systems, as well as the unitary equivalence of the absolutely continuous parts of the singularly perturbed and unperturbed Schrödinger operators. In the proofs of our main theorems we make use of abstract methods from extension theory of symmetric operators, some algebraic considerations and results on elliptic regularity
- …