1,043 research outputs found
A Klein Gordon Particle Captured by Embedded Curves
In the present work, a Klein Gordon particle with singular interactions
supported on embedded curves on Riemannian manifolds is discussed from a more
direct and physical perspective, via the heat kernel approach. It is shown that
the renormalized problem is well-defined, and the ground state energy is unique
and finite. The renormalization group invariance of the model is discussed, and
it is observed that the model is asymptotically free.Comment: Published version, 13 pages, no figures. arXiv admin note:
substantial text overlap with arXiv:1202.356
Schroedinger operators with singular interactions: a model of tunneling resonances
We discuss a generalized Schr\"odinger operator in , with an attractive singular interaction supported by a
-dimensional hyperplane and a finite family of points. It can be
regarded as a model of a leaky quantum wire and a family of quantum dots if
, or surface waves in presence of a finite number of impurities if .
We analyze the discrete spectrum, and furthermore, we show that the resonance
problem in this setting can be explicitly solved; by Birman-Schwinger method it
is cast into a form similar to the Friedrichs model.Comment: LaTeX2e, 34 page
On the spectrum of a bent chain graph
We study Schr\"odinger operators on an infinite quantum graph of a chain form
which consists of identical rings connected at the touching points by
-couplings with a parameter . If the graph is "straight",
i.e. periodic with respect to ring shifts, its Hamiltonian has a band spectrum
with all the gaps open whenever . We consider a "bending"
deformation of the chain consisting of changing one position at a single ring
and show that it gives rise to eigenvalues in the open spectral gaps. We
analyze dependence of these eigenvalues on the coupling and the
"bending angle" as well as resonances of the system coming from the bending. We
also discuss the behaviour of the eigenvalues and resonances at the edges of
the spectral bands.Comment: LaTeX, 23 pages with 7 figures; minor changes, references added; to
appear in J. Phys. A: Math. Theo
Sufficient conditions for the anti-Zeno effect
The ideal anti-Zeno effect means that a perpetual observation leads to an
immediate disappearance of the unstable system. We present a straightforward
way to derive sufficient conditions under which such a situation occurs
expressed in terms of the decaying states and spectral properties of the
Hamiltonian. They show, in particular, that the gap between Zeno and anti-Zeno
effects is in fact very narrow.Comment: LatEx2e, 9 pages; a revised text, to appear in J. Phys. A: Math. Ge
A general approximation of quantum graph vertex couplings by scaled Schroedinger operators on thin branched manifolds
We demonstrate that any self-adjoint coupling in a quantum graph vertex can
be approximated by a family of magnetic Schroedinger operators on a tubular
network built over the graph. If such a manifold has a boundary, Neumann
conditions are imposed at it. The procedure involves a local change of graph
topology in the vicinity of the vertex; the approximation scheme constructed on
the graph is subsequently `lifted' to the manifold. For the corresponding
operator a norm-resolvent convergence is proved, with the natural
identification map, as the tube diameters tend to zero.Comment: 19 pages, one figure; introduction amended and some references added,
to appear in CM
Exponential splitting of bound states in a waveguide with a pair of distant windows
We consider Laplacian in a straight planar strip with Dirichlet boundary
which has two Neumann ``windows'' of the same length the centers of which are
apart, and study the asymptotic behaviour of the discrete spectrum as
. It is shown that there are pairs of eigenvalues around each
isolated eigenvalue of a single-window strip and their distances vanish
exponentially in the limit . We derive an asymptotic expansion also
in the case where a single window gives rise to a threshold resonance which the
presence of the other window turns into a single isolated eigenvalue
An approximation to couplings on graphs
We discuss a general parametrization for vertices of quantum graphs and show,
in particular, how the and coupling at an edge vertex
can be approximated by means of couplings of the type provided
the latter are properly scaled.Comment: 10 pages, LaTeX, 1 figure added, to be published in J. of Phys.
Spectral and localization properties of the Dirichlet wave guide with two concentric Neumann discs
Bound states of the Hamiltonian describing a quantum particle living on three
dimensional straight strip of width are investigated. We impose the Neumann
boundary condition on the two concentric windows of the radii and
located on the opposite walls and the Dirichlet boundary condition on the
remaining part of the boundary of the strip. We prove that such a system
exhibits discrete eigenvalues below the essential spectrum for any .
When and tend to the infinity, the asymptotic of the eigenvalue is
derived. A comparative analysis with the one-window case reveals that due to
the additional possibility of the regulating energy spectrum the anticrossing
structure builds up as a function of the inner radius with its sharpness
increasing for the larger outer radius. Mathematical and physical
interpretation of the obtained results is presented; namely, it is derived that
the anticrossings are accompanied by the drastic changes of the wave function
localization. Parallels are drawn to the other structures exhibiting similar
phenomena; in particular, it is proved that, contrary to the two-dimensional
geometry, at the critical Neumann radii true bound states exist.Comment: 25 pages, 7 figure
The Generalized Star Product and the Factorization of Scattering Matrices on Graphs
In this article we continue our analysis of Schr\"odinger operators on
arbitrary graphs given as certain Laplace operators. In the present paper we
give the proof of the composition rule for the scattering matrices. This
composition rule gives the scattering matrix of a graph as a generalized star
product of the scattering matrices corresponding to its subgraphs. We perform a
detailed analysis of the generalized star product for arbitrary unitary
matrices. The relation to the theory of transfer matrices is also discussed
- …