13 research outputs found

    Urinary arsenic profiles reveal exposures to inorganic arsenic from private drinking water supplies in Cornwall, UK

    Get PDF
    Private water supplies (PWS) in Cornwall, South West England exceeded the current WHO guidance value and UK prescribed concentration or value (PCV) for arsenic of 10 μg/L in 5% of properties surveyed (n = 497). In this follow-up study, the first of its kind in the UK, volunteers (n = 207) from 127 households who used their PWS for drinking, provided urine and drinking water samples for total As determination by inductively coupled plasma mass spectrometry (ICP-MS) and urinary As speciation by high performance liquid chromatography ICP-MS (HPLC-ICP-MS). Arsenic concentrations exceeding 10 μg/L were found in the PWS of 10% of the volunteers. Unadjusted total urinary As concentrations were poorly correlated (Spearman’s ρ = 0.36 (P < 0.001)) with PWS As largely due to the use of spot urine samples and the dominance of arsenobetaine (AB) from seafood sources. However, the osmolality adjusted sum, U-AsIMM, of urinary inorganic As species, arsenite (AsIII) and arsenate (AsV), and their metabolites, methylarsonate (MA) and dimethylarsinate (DMA), was found to strongly correlate (Spearman’s ρ: 0.62 (P < 0.001)) with PWS As, indicating private water supplies as the dominant source of inorganic As exposure in the study population of PWS users

    Prolonged exposure to arsenic in UK private water supplies: toenail, hair and drinking water concentrations

    Get PDF
    Chronic exposure to arsenic (As) in drinking water is an established cause of cancer and other adverse health effects. Arsenic concentrations >10 μg L−1 were previously measured in 5% of private water supplies (PWS) in Cornwall, UK. The present study investigated prolongued exposure to As by measuring biomarkers in hair and toenail samples from 212 volunteers and repeated measurements of As in drinking water from 127 households served by PWS. Strong positive Pearson correlations (rp = 0.95) indicated stability of water As concentrations over the time period investigated (up to 31 months). Drinking water As concentrations were positively correlated with toenail (rp = 0.53) and hair (rp = 0.38) As concentrations – indicative of prolonged exposure. Analysis of washing procedure solutions provided strong evidence of the effective removal of exogenous As from toenail samples. Significantly higher As concentrations were measured in hair samples from males and smokers and As concentrations in toenails were negatively associated with age. A positive association between seafood consumption and toenail As and a negative association between home-grown vegetable consumption and hair As was observed for volunteers exposed to <1 As μg L−1 in drinking water. These findings have important implications regarding the interpretation of toenail and hair biomarkers. Substantial variation in biomarker As concentrations remained unaccounted for, with soil and dust exposure as possible explanations

    Glutamate utilization promotes meningococcal survival in vivo through avoidance of the neutrophil oxidative burst

    No full text
    Polymorphonuclear neutrophil leucocytes (PMNs) are a critical part of innate immune defence against bac- terial pathogens, and only a limited subset of microbes can escape killing by these phagocytic cells. Here we show that Neisseria meningitidis, a leading cause of septicaemia and meningitis, can avoid killing by PMNs and this is dependent on the ability of the bacterium to acquire L-glutamate through its GltT uptake system. We demonstrate that the uptake of available L- glutamate promotes N. meningitidis evasion of PMN reactive oxygen species produced by the oxidative burst. In the meningococcus, L-glutamate is converted to glutathione, a key molecule for maintaining intrac- ellular redox potential, which protects the bacterium from reactive oxygen species such as hydrogen per- oxide. We show that this mechanism contributes to the ability of N. meningitidis to cause bacteraemia, a criti- cal step in the disease process during infections caused by this important human pathogen

    CD1-Restricted T Cells in Host Defense to Infectious Diseases

    No full text
    corecore