13,282 research outputs found
On the accumulation of deleterious mutations during range expansions
We investigate the effect of spatial range expansions on the evolution of
fitness when beneficial and deleterious mutations co-segregate. We perform
individual-based simulations of a uniform linear habitat and complement them
with analytical approximations for the evolution of mean fitness at the edge of
the expansion. We find that deleterious mutations accumulate steadily on the
wave front during range expansions, thus creating an expansion load. Reduced
fitness due to the expansion load is not restricted to the wave front but
occurs over a large proportion of newly colonized habitats. The expansion load
can persist and represent a major fraction of the total mutation load thousands
of generations after the expansion. Our results extend qualitatively and
quantitatively to two-dimensional expansions. The phenomenon of expansion load
may explain growing evidence that populations that have recently expanded,
including humans, show an excess of deleterious mutations. To test the
predictions of our model, we analyze patterns of neutral and non-neutral
genetic diversity in humans and find an excellent fit between theory and data
Variants of the human PPARG locus and the susceptibility to chronic periodontitis
Apart from its regulatory function in lipid and glucose metabolism, peroxisome proliferator-activated receptor (PPAR)γ has impact on the regulation of inflammation and bone metabolism. The aim of the study was to investigate the association of five polymorphisms (rs10865710, rs2067819, rs3892175, rs1801282, rs3856806) within the PPARG gene with chronic periodontitis. The study population comprised 402 periodontitis patients and 793 healthy individuals. Genotyping of the PPARG gene polymorphisms was performed by PCR and melting curve analysis. Comparison of frequency distribution of genotypes between individuals with periodontal disease and healthy controls for the polymorphism rs3856806 showed a P-value of 0.04 but failed to reach significance after correction for multiple testing (P  0.90). A 3-site analysis (rs2067819-rs1801282-rs3856860) revealed five haplotypes with a frequency of ≥1% among cases and controls. Following adjustment for age, gender and smoking, none of the haplotypes was significantly different between periodontitis and healthy controls after Bonferroni correction. This study could not show a significant association between PPARG gene variants and chronic periodontitis
PGDSpider: an automated data conversion tool for connecting population genetics and genomics programs
Summary: The analysis of genetic data often requires a combination of several approaches using different and sometimes incompatible programs. In order to facilitate data exchange and file conversions between population genetics programs, we introduce PGDSpider, a Java program that can read 27 different file formats and export data into 29, partially overlapping, other file formats. The PGDSpider package includes both an intuitive graphical user interface and a command-line version allowing its integration in complex data analysis pipelines. Availability: PGDSpider is freely available under the BSD 3-Clause license on http://cmpg.unibe.ch/software/PGDSpider/ Contact: [email protected] Supplementary information: Supplementary data are available at Bioinformatics onlin
SIMCOAL 2.0: a program to simulate genomic diversity over large recombining regions in a subdivided population with a complex history
Summary: We present an extension of the program SIMCOAL, which allows for simulation of the genomic diversity of samples drawn from a set of populations with arbitrary patterns of migrations and complex demographic histories, including bottlenecks and various modes of demographic expansion. The main additions to the previous version include the possibility of arbitrary and heterogeneous recombination rates between adjacent loci and multiple coalescent events per generation, allowing for the simulation of very large samples and recombining genomic regions, together with the simulation of single nucleotide polymorphism data with frequency ascertainment bias. Availability: http://cmpg.unibe.ch/software/simcoal2/ Supplementary information: http://cmpg.unibe.ch/software/simcoal
SPLATCHE2: a spatially explicit simulation framework for complex demography, genetic admixture and recombination
Summary: SPLATCHE2 is a program to simulate the demography of populations and the resulting molecular diversity for a wide range of evolutionary scenarios. The spatially explicit simulation framework can account for environmental heterogeneity and fluctuations, and it can manage multiple population sources. A coalescent-based approach is used to generate genetic markers mostly used in population genetics studies (DNA sequences, SNPs, STRs or RFLPs). Various combinations of independent, fully or partially linked genetic markers can be produced under a recombination model based on the ancestral recombination graph. Competition between two populations (or species) can also be simulated with user-defined levels of admixture between the two populations. SPLATCHE2 may be used to generate the expected genetic diversity under complex demographic scenarios and can thus serve to test null hypotheses. For model parameter estimation, SPLATCHE2 can easily be integrated into an Approximate Bayesian Computation (ABC) framework. Availability and implementation: SPLATCHE2 is a C++ program compiled for Windows and Linux platforms. It is freely available at www.splatche.com, together with its related documentation and example data. Contact: [email protected]
Gene-flow between populations of cotton bollworm Helicoverpa armigera (Lepidoptera: Noctuidae) is highly variable between years
Both large and small scale migrations of Helicoverpa armigera Hübner in Australia were investigated using AMOVA analysis and genetic assignment tests. Five microsatellite loci were screened across 3142 individuals from 16 localities in eight major cotton and grain growing regions within Australia, over a 38-month period (November 1999 to January 2003). From November 1999 to March 2001 relatively low levels of migration were characterized between growing regions. Substantially higher than average gene-flow rates and limited differentiation between cropping regions characterized the period from April 2001 to March 2002. A reduced migration rate in the year from April 2002 to March 2003 resulted in significant genetic structuring between cropping regions. This differentiation was established within two or three generations. Genetic drift alone is unlikely to drive genetic differentiation over such a small number of generations, unless it is accompanied by extreme bottlenecks and/or selection. Helicoverpa armigera in Australia demonstrated isolation by distance, so immigration into cropping regions is more likely to come from nearby regions than from afar. This effect was most pronounced in years with limited migration. However, there is evidence of long distance dispersal events in periods of high migration (April 2001–March 2002). The implications of highly variable migration patterns for resistance management are considered.K.D. Scott, K.S. Wilkinson, N. Lawrence, C.L. Lange, L.J. Scott, M.A. Merritt, A.J. Lowe and G.C Graha
Genetic differentiation in Scottish populations of the pine beauty moth Panolis flammea (Lepidoptera: Noctuidae)
Pine beauty moth, Panolis flammea (Denis & Schiffermüller), is a recent but persistent pest of lodgepole pine plantations in Scotland, but exists naturally at low levels within remnants and plantations of Scots pine. To test whether separate host races occur in lodgepole and Scots pine stands and to examine colonization dynamics, allozyme, randomly amplified polymorphic DNA (RAPD) and mitochondrial variation were screened within a range of Scottish samples. RAPD analysis indicated limited long distance dispersal (FST = 0.099), and significant isolation by distance (P < 0.05); but that colonization between more proximate populations was often variable, from extensive to limited exchange. When compared with material from Germany, Scottish samples were found to be more diverse and significantly differentiated for all markers. For mtDNA, two highly divergent groups of haplotypes were evident, one group contained both German and Scottish samples and the other was predominantly Scottish. No genetic differentiation was evident between P. flammea populations sampled from different hosts, and no diversity bottleneck was observed in the lodgepole group. Indeed, lodgepole stands appear to have been colonized on multiple occasions from Scots pine sources and neighbouring populations on different hosts are close to panmixia.A.J. Lowe, B.J. Hicks, K. Worley, R.A. Ennos, J.D. Morman, G. Stone and A.D. Wat
Genomic Scans Support Repetitive Continental Colonization Events during the Rapid Radiation of Voles (Rodentia: Microtus): the Utility of AFLPs versus Mitochondrial and Nuclear Sequence Markers
Single locus studies might not resolve phylogenetic relationships and the evolutionary history of taxa. The analysis of multiple markers promises higher resolution, and congruence among loci may indicate that the phylogenies represent the underlying species history. Here, we examine the utility of a genome-wide approach based on amplified fragment length polymorphisms (AFLP) and several DNA sequence markers in resolving phylogenetic signals in the rapidly radiating rodent genus Microtus which produced about 70 vole species within the last 1.2-2 myr. The current Holarctic distribution of Microtus is assumed to have resulted from three independent colonization events out of Asia to North America, Europe, and northern Asia without subsequent colonization, which would have led to deep splits between species from different continents. We investigated this hypothesis of three single colonization events by reconstructing the phylogenetic relationships among species from all three continents based on data from the first exon of the nuclear arginine vasopressin receptor 1a gene (EXON1), an adjacent noncoding region and the mitochondrial cytochrome b gene. The phylogenetic patterns obtained from these sequence markers are contrasted to genome-wide data on more than 1800 amplified fragment length polymorphisms (AFLP) analyzed for the same samples. Our results show that the single sequence markers partially resolve the phylogenetic relationships within Microtus, but with some incongruence mostly between EXON1 and the other loci. However, deeper nodes of the radiation are only weakly supported and neither the combination of the markers nor additional nuclear sequences improved the resolution significantly. AFLPs provided much stronger support for major continent-specific clades, and show also that reciprocal monophyly of American and European voles is incomplete. Our results demonstrate that Microtus voles colonized the American and European continents each repeatedly in several independent events on similar colonization routes during their radiation. More generally, this study supports the suitability of AFLPs as an alternative to sequence markers to resolve the evolutionary history of rapidly radiating tax
fastsimcoal: a continuous-time coalescent simulator of genomic diversity under arbitrarily complex evolutionary scenarios
Motivation: Genetic studies focus on increasingly larger genomic regions of both extant and ancient DNA, and there is a need for simulation software to match these technological advances. We present here a new coalescent-based simulation program fastsimcoal, which is able to quickly simulate a variety of genetic markers scattered over very long genomic regions with arbitrary recombination patterns under complex evolutionary scenarios. Availability and Implementation: fastsimcoal is a C++ program compiled for Windows, MacOsX and Linux platforms. It is freely available at cmpg.unibe.ch/software/fastsimcoal/, together with its detailed user manual and example input files. Contact: [email protected] Supplementary Information: Supplementary data are available at Bioinformatics onlin
- …
