26 research outputs found

    The Agrobacterium vitis T-6b oncoprotein induces auxin-independent cell expansion in tobacco

    Get PDF
    Among the Agrobacterium T-DNA genes, rolB, rolC, orf13, orf8, lso, 6b and several other genes encode weakly homologous proteins with remarkable effects on plant growth. The 6b oncogene induces tumors and enations. In order to study its properties we have used transgenic tobacco plants that carry a dexamethasone-inducible 6b gene, dex-T-6b. Upon induction, dex-T-6b plants develop a large array of morphological modifications, some of which involve abnormal cell expansion. In the present investigation, dex-T-6b-induced expansion was studied in intact leaves and an in vitro leaf disc system. Although T-6b and indole-3-acetic acid (IAA) both induced expansion and were non-additive, T-6b expression did not increase IAA levels, nor did it induce an IAA-responsive gene. Fusicoccin (FC) is known to stimulate expansion by increasing cell wall plasticity. T-6b- and FC-induced expansion were additive at saturating FC concentrations, indicating that T-6b does not act by a similar mechanism to FC. T-6b expression led to higher leaf osmolality values, in contrast to FC, suggesting that the T-6b gene induces expansion by increasing osmolyte concentrations. Metabolite profiling showed that glucose and fructose played a major role in this increase. We infer that T-6b disrupts the osmoregulatory controls that govern cell expansion during development and wound healing

    LAP3, a novel plant protein required for pollen development, is essential for proper exine formation

    Get PDF
    We isolated lap3-1 and lap3-2 mutants in ascreen for pollen that displays abnormal stigma binding.Unlike wild-type pollen, lap3-1 and lap3-2 pollen exine isthinner, weaker, and is missing some connections betweentheir roof-like tectum structures. We describe the mappingand identification of LAP3 as a novel gene that contains arepetitive motif found in b-propeller enzymes. Insertionmutations in LAP3 lead to male sterility. To investigatepossible roles for LAP3 in pollen development, we assayedthe metabolite profile of anther tissues containing developingpollen grains and found that the lap3-2 defect leadsto a broad range of metabolic changes. The largest changeswere seen in levels of a straight-chain hydrocarbon nonacosaneand in naringenin chalcone, an obligate compoundin the flavonoid biosynthesis pathway

    LAP3, a novel plant protein required for pollen development, is essential for proper exine formation

    Get PDF
    We isolated lap3-1 and lap3-2 mutants in ascreen for pollen that displays abnormal stigma binding.Unlike wild-type pollen, lap3-1 and lap3-2 pollen exine isthinner, weaker, and is missing some connections betweentheir roof-like tectum structures. We describe the mappingand identification of LAP3 as a novel gene that contains arepetitive motif found in b-propeller enzymes. Insertionmutations in LAP3 lead to male sterility. To investigatepossible roles for LAP3 in pollen development, we assayedthe metabolite profile of anther tissues containing developingpollen grains and found that the lap3-2 defect leadsto a broad range of metabolic changes. The largest changeswere seen in levels of a straight-chain hydrocarbon nonacosaneand in naringenin chalcone, an obligate compoundin the flavonoid biosynthesis pathway

    Modernizing and Harmonizing Regulatory Data Requirements for Genetically Modified Crops-Perspectives From a Workshop

    Get PDF
    Genetically modified (GM) crops that have been engineered to express transgenes have been in commercial use since 1995 and are annually grown on 200 million hectares globally. These crops have provided documented benefits to food security, rural economies, and the environment, with no substantiated case of food, feed, or environmental harm attributable to cultivation or consumption. Despite this extensive history of advantages and safety, the level of regulatory scrutiny has continually increased, placing undue burdens on regulators, developers, and society, while reinforcing consumer distrust of the technology. CropLife International held a workshop at the 16th International Society of Biosafety Research (ISBR) Symposium to examine the scientific basis for modernizing global regulatory frameworks for GM crops. Participants represented a spectrum of global stakeholders, including academic researchers, GM crop developers, regulatory consultants, and regulators. Concurrently examining the considerations of food and feed safety, along with environmental safety, for GM crops, the workshop presented recommendations for a core set of data that should always be considered, and supplementary (i.e., conditional) data that would be warranted only on a case-by-case basis to address specific plausible hypotheses of harm. Then, using a case-study involving a hypothetical GM maize event expressing two familiar traits (insect protection and herbicide tolerance), participants were asked to consider these recommendations and discuss if any additional data might be warranted to support a science-based risk assessment or for regulatory decision-making. The discussions during the workshop highlighted that the set of data to address the food, feed, and environmental safety of the hypothetical GM maize, in relation to a conventional comparator, could be modernized compared to current global regulatory requirements. If these scientific approaches to modernize data packages for GM crop regulation were adopted globally, GM crops could be commercialized in a more timely manner, thereby enabling development of more diverse GM traits to benefit growers, consumers, and the environment

    Mild Reductions in Mitochondrial NAD- Dependent Isocitrate Dehydrogenase Activity Result in Altered Nitrate Assimilation and Pigmentation But Do Not Impact Growth

    Get PDF
    ABSTRACT Transgenic tomato (Solanum lycopersicum) plants were generated expressing a fragment of the mitochondrial NAD-dependent isocitrate dehydrogenase gene (SlIDH1) in the antisense orientation. The transgenic plants displayed a mild reduction in the activity of the target enzyme in the leaves but essentially no visible alteration in growth from the wild-type. Fruit size and yield were, however, reduced. These plants were characterized by relatively few changes in photosynthetic parameters, but they displayed a minor decrease in maximum photosynthetic efficiency (Fv/Fm). Furthermore, a clear reduction in flux through the tricarboxylic acid (TCA) cycle was observed in the transformants. Additionally, biochemical analyses revealed that the transgenic lines exhibited considerably altered metabolism, being characterized by slight decreases in the levels of amino acids, intermediates of the TCA cycle, photosynthetic pigments, starch, and NAD(P)H levels, but increased levels of nitrate and protein. Results from these studies show that even small changes in mitochondrial NAD-dependent isocitrate dehydrogenase activity lead to noticeable alterations in nitrate assimilation and suggest the presence of different strategies by which metabolism is reprogrammed to compensate for this deficiency
    corecore