18 research outputs found

    Golden Standard: a complete standard, portable, and interoperative MoClo tool for model and non-model proteobacteria

    Get PDF
    16 p.-8 fig.-1 tab.-1 graph.abst.Modular cloning has become a benchmark technology in synthetic biology. However, a notable disparity exists between its remarkable development and the need for standardization to facilitate seamless interoperability among systems. The field is thus impeded by an overwhelming proliferation of organism-specific systems that frequently lack compatibility. To overcome these issues, we present Golden Standard (GS), a Type IIS assembly method underpinned by the Standard European Vector Architecture. GS unlocks modular cloning applications for most bacteria, and delivers combinatorial multi-part assembly to create genetic circuits of up to twenty transcription units (TUs). Reliance on MoClo syntax renders GS fully compatible with many existing tools and it sets the path towards efficient reusability of available part libraries and assembled TUs. GS was validated in terms of DNA assembly, portability, interoperability and phenotype engineering in α-, β-, γ- and δ-proteobacteria. Furthermore, we provide a computational pipeline for parts characterization that was used to assess the performance of GS parts. To promote community-driven development of GS, we provide a dedicated web-portal including a repository of parts, vectors, and Wizard and Setup tools that guide users in designing constructs. Overall, GS establishes an open, standardized framework propelling the progress of synthetic biology as a whole.European Union's Horizon 2020 research and innovation program [814650 (Synbio4Flav), 633962 (P4SB), 814418 (SinFonia), 870294 (MixUp)]; Spanish Ministry of Science and Innovation for the RobExplode project PID2019‐108458RB‐I00 [AEI /10.13039/501100011033], BIO2017-83448-R and PID2020-112766RB-C21, and CSIC’s Interdisciplinary Platform for Sustainable Plastics towards a Circular Economy+ (PTI-SusPlast+); A.G.L. was funded by ‘Fondo Social Europeo’ and ‘Iniciativa de Empleo Juvenil (YEI)’ [PEJ-2020-AI/BIO-18028] and S.S. by a FPU (Ayuda para la formación de profesorado universitario) fellowship [FPU17/03978] from the Spanish Ministry of Universities. Funding for open access charge: Consejo Superior de Investigaciones Científicas (CSIC) [82582328].Peer reviewe

    Chemical synthetic biology

    No full text
    Synthetic biology, which in 2020 turned 20 years old, is a very dynamically developing field. Unlike traditional molecular and cellular biology, synthetic biology focuses on the design and construction of parts, devices and systems such as enzymes, genetic circuits, metabolic pathways, etc. that can be modeled and adapted to specific requirements, and assembly into integrated systems for solving specific problems. The basic assumption of synthetic biology is the application of engineering principles such as standardization and modularity. Synthetic biology is traditionally dominated by top-down approaches that incorporate or redesign well-characterized standard biological parts into cellular systems. In synthetic biology research there are also bottom-up approaches aiming to construct cell-like systems starting with molecular building blocks. This complementary approach is called "chemical synthetic biology." In this case the goal is to use unnatural chemicals to reproduce biological behavior. Under the bottom-up approach synthetic biology involves construction of so-called minimal cells or living cells from scratch and creating orthogonal biological systems based on biochemistry not found in nature. Bottom-up approaches complement the study of living cells, facilitate the definition of principles governing biological organization and identify new systems for biotechnological production. Examples of breakthrough achievements in chemical synthetic biology such as peptide nucleic acids and selected developments over the past few years are presented in this review article

    Microbial Glycosylation of Daidzein, Genistein and Biochanin A: Two New Glucosides of Biochanin A

    No full text
    Biotransformation of daidzein, genistein and biochanin A by three selected filamentous fungi was investigated. As a result of biotransformations, six glycosylation products were obtained. Fungus Beauveria bassiana converted all tested isoflavones to 4″-O-methyl-7-O-glucosyl derivatives, whereas Absidia coerulea and Absidia glauca were able to transform genistein and biochanin A to genistin and sissotrin, respectively. In the culture of Absidia coerulea, in addition to the sissotrin, the product of glucosylation at position 5 was formed. Two of the obtained compounds have not been published so far: 4″-O-methyl-7-O-glucosyl biochanin A and 5-O-glucosyl biochanin A (isosissotrin). Biotransformation products were obtained with 22%–40% isolated yield

    Bioactivity In Vitro of Quercetin Glycoside Obtained in Beauveria bassiana Culture and Its Interaction with Liposome Membranes

    No full text
    Quercetin (Q) was used as substrate for regioselective glycosylation at the C-7 position catalyzed by Beauveria bassiana AM278 strain. As a result the glycoside quercetin 7-O-β-d-(4″-O-methyl)glucopyranoside (Q 7-MeGlu) was formed. The goal of the studies was to determine the anti-oxidative (liposome membrane protection against free radicals IC50Q 7-MeGlu = 5.47 and IC50Q = 4.49 µM) and anti-inflammatory (COX-1 and COX-2 enzymes activity inhibition) properties of Q 7-MeGlu as compared to Q. Every attempt was made to clarify the antioxidant activity of these molecules, which are able to interact with egg phosphatidylcholine liposomes, using a fluorometric method (by applying the probes MC540, TMA-DPH and DPH). The results indicated that Q 7-MeGlu and Q are responsible for increasing the packing order, mainly in the hydrophilic but also in hydrophobic regions of the membrane (Q > Q 7-MeGlu). These observations, confirmed by a 1H-NMR method, are key to understanding their antioxidant activity which is probably caused by the stabilizing effect on the lipid membranes. The results showed that Q 7-MeGlu and Q have ability to quench the human serum albumin (HSA) intrinsic fluorescence through a static quenching mechanism. The results of thermodynamic parameters indicated that the process of formation complexes between studied molecules and HSA was spontaneous and caused through Van der Waals interactions and hydrogen bonding

    Antimicrobial Properties of Spent Hops Extracts, Flavonoids Isolated Therefrom, and Their Derivatives

    No full text
    Hop cones preparations possess a wide range of biological activities including antimicrobial properties. In this work, we evaluated the effect of various organic extracts obtained from spent hops, as well as six hops flavonoids and their twenty natural and synthetic derivatives on human and plant microbial pathogens. Methylene chloride, acetone, ethyl acetate, and methanol were used as extractants. Seven flavonoids, among them two natural (α,β-dihydroxanthohumol and 8-prenylnaringenin) showed significant activity against methicillin sensitive and resistant Staphylococcus aureus and Staphylococcus epidermidis strains with the lowest MIC80 value of 0.5 µg/mL. The crude ethyl acetate, acetone, and methanol extracts from the spent hops exhibited antifungal activity against Fusarium oxysporum, F. culmorum, and F. semitectum with the lowest MIC50 of 0.5 mg/mL, while the methylene chloride extract exerted antifungal activity against Botrytis cinerea with the MIC50 of 1 mg/mL. The preparation obtained after the removal of xanthohumol from the spent hops crude extracts retained up to 95% of activity. These findings suggest that various spent hops extracts may be effective agents for the control of plant pathogens of economic importance, like Botrytis cinerea and Fusarium oxysporum, while some compounds from spent hops or their derivatives may become useful for staphylococcal infections

    The Influence of Glycosylation of Natural and Synthetic Prenylated Flavonoids on Binding to Human Serum Albumin and Inhibition of Cyclooxygenases COX-1 and COX-2

    No full text
    The synthesis of different classes of prenylated aglycones (α,β-dihydroxanthohumol (2) and (Z)-6,4’-dihydroxy-4-methoxy-7-prenylaurone (3)) was performed in one step reactions from xanthohumol (1)—major prenylated chalcone naturally occurring in hops. Obtained flavonoids (2–3) and xanthohumol (1) were used as substrates for regioselective fungal glycosylation catalyzed by two Absidia species and Beauveria bassiana. As a result six glycosides (4–9) were formed, of which four glycosides (6–9) have not been published so far. The influence of flavonoid skeleton and the presence of glucopyranose and 4-O-methylglucopyranose moiety in flavonoid molecule on binding to main protein in plasma, human serum albumin (HSA), and inhibition of cyclooxygenases COX-1 and COX-2 were investigated. Results showed that chalcone (1) had the highest binding affinity to HSA (8.624 × 104 M−1) of all tested compounds. It has also exhibited the highest inhibition of cyclooxygenases activity, and it was a two-fold stronger inhibitor than α,β-dihydrochalcone (2) and aurone (3). The presence of sugar moiety in flavonoid molecule caused the loss of HSA binding activity as well as the decrease in inhibition of cyclooxygenases activity

    Synthesis and Antiproliferative Activity of Minor Hops Prenylflavonoids and New Insights on Prenyl Group Cyclization

    No full text
    Synthesis of minor prenylflavonoids found in hops and their non-natural derivatives were performed. The antiproliferative activity of the obtained compounds against some human cancer cell lines was investigated. Using xanthohumol isolated from spent hops as a lead compound, a series of minor hop prenylflavonoids and synthetic derivatives were obtained by isomerization, cyclisation, oxidative-cyclisation, oxidation, reduction and demethylation reactions. Three human cancer cell lines—breast (MCF-7), prostate (PC-3) and colon (HT-29)—were used in antiproliferative assays, with cisplatin as a control compound. Five minor hop prenyl flavonoids and nine non-natural derivatives of xanthohumol have been synthetized. Syntheses of xanthohumol K, its dihydro- and tetrahydro-derivatives and 1″,2″,α,β-tetrahydroxanthohumol C were described for the first time. All of the minor hops prenyl flavonoids exhibited strong to moderate antiproliferative activity in vitro. The minor hops flavonoids xanthohumol C and 1″,2″-dihydroxanthohumol K and non-natural 2,3-dehydroisoxanthohumol exhibited the activity comparable to cisplatin. Results described in the article suggest that flavonoids containing chromane- and chromene-like moieties, especially chalcones, are potent antiproliferative agents. The developed new efficient, regioselective cyclisation reaction of the xanthohumol prenyl group to 1″,2″-dihydroxantohumol K may be used in the synthesis of other compounds with the chromane moiety
    corecore