22 research outputs found

    Solid Contact Potentiometric Sensors Based on a New Class of Ionic Liquids on Thiacalixarene Platform

    Get PDF
    New solid-contact potentiometric sensors have been developed for hydrogen phosphate recognition on the basis of ionic liquids containing tetrasubstituted derivatives of thiacalix[4]arene in cone and 1,3-alternate conformations with trimethyl- and triethylammonium fragments at the lower rim substituents. The recognition of selected anions including carbonate, hydrogen phosphate, perchlorate, oxalate, picrate, and EDTA was conducted using electrochemical impedance spectroscopy with ferricyanide redox probe. For the potentiometric sensor assembling, the ionic liquids were stabilized by multiwalled carbon nanotubes and carbon black deposited on the glassy carbon electrode. The influence of support, steric factors and modification conditions on the sensor performance has been investigated. As was shown, potentiometric sensors developed make it possible to selectively determine hydrogen phosphate anion within the concentration range from 1 × 10−2 to 1 × 10−6 M and limit of detection of 2 × 10−7−1 × 10−6 M with unbiased selectivity coefficients varied from 1.2 × 10−1 to 1.0 × 10−8 (carbonate, acetate, oxalate, succinate, glutharate, glycolate, and malonate anions)

    Biosensors : essentials / Gennady Evtugyn.

    No full text
    pharmacy bookfair2015x, 265 pages

    Electrochemical Immuno- and Aptasensors for Mycotoxin Determination

    No full text
    Modern analysis of food and feed is mostly focused on development of fast and reliable portable devices intended for field applications. In this review, electrochemical biosensors based on immunological reactions and aptamers are considered in the determination of mycotoxins as one of most common contaminants able to negatively affect human health. The characteristics of biosensors are considered from the point of view of general principles of bioreceptor implementation and signal transduction providing sub-nanomolar detection limits of mycotoxins. Moreover, the modern trends of bioreceptor selection and modification are discussed as well as future trends of biosensor development for mycotoxin determination are considered

    One-Step Electropolymerization of Azure A and Carbon Nanomaterials for DNA-Sensor Assembling and Doxorubicin Biosensing

    No full text
    New highly sensitive voltammetric DNA-sensors have been developed for the detection of cytostatic drug doxorubicin based on Azure A electropolymerized on various carbon nanomaterials, i.e., functionalized multi-walled carbon nanotubes (fMWCNTs) and carbon black (CB). Carbon materials promote electropolymerization of the Azure A dye applied as a matrix for DNA molecules saturated with methylene blue (MB) molecules. Interaction with the intercalator (doxorubicin) liberates the MB molecules and changes redox activity. The doxorubicin concentration ranges reached by cyclic voltammetry were from 0.1 pM to 100 nM (limit of detection, LOD, 0.03 pM) for the biosensor based on CB, and from 0.3 pM to 0.1 nM (LOD 0.3 pM) for that based on fMWCNTs. DNA-sensors were tested on spiked samples of artificial serum, and biological and pharmaceutical samples. The DNA-sensors can find further application in the monitoring of the doxorubicin residuals in cancer treatment, as well as for pharmacokinetics studies

    Electrochemical Acetylcholinesterase Sensors for Anti-Alzheimer’s Disease Drug Determination

    No full text
    Neurodegenerative diseases and Alzheimer’s disease (AD), as one of the most common causes of dementia, result in progressive losses of cholinergic neurons and a reduction in the presynaptic markers of the cholinergic system. These consequences can be compensated by the inhibition of acetylcholinesterase (AChE) followed by a decrease in the rate of acetylcholine hydrolysis. For this reason, anticholinesterase drugs with reversible inhibition effects are applied for the administration of neurodegenerative diseases. Their overdosage, variation in efficiency and recommendation of an individual daily dose require simple and reliable measurement devices capable of the assessment of the drug concentration in biological fluids and medications. In this review, the performance of electrochemical biosensors utilizing immobilized cholinesterases is considered to show their advantages and drawbacks in the determination of anticholinesterase drugs. In addition, common drugs applied in treating neurodegenerative diseases are briefly characterized. The immobilization of enzymes, nature of the signal recorded and its dependence on the transducer modification are considered and the analytical characteristics of appropriate biosensors are summarized for donepezil, huperzine A, rivastigmine, eserine and galantamine as common anti-dementia drugs. Finally, the prospects for the application of AChE-based biosensors in clinical practice are discussed

    Electrochemical Sensor Based on Poly(Azure B)-DNA Composite for Doxorubicin Determination

    No full text
    A new voltammetric DNA sensor has been developed for doxorubicin determination on the platform of a glassy carbon electrode (GCE) covered with electropolymerized Azure B film and physically adsorbed native DNA. The redox properties of polymeric Azure B were monitored at various pH and scan rates. DNA application decreased the peak currents related to polymeric and monomeric forms of the dye, whereas incubation in doxorubicin solution partially restored the peaks in accordance with the drug and DNA concentration. The relative shift of the cathodic peak current caused by doxorubicin depended on the nominal DNA concentration and its application mode. In optimal conditions, the DNA sensor makes it possible to determine between 0.1 μM to 0.1 nM doxorubicin (limit of detection 7 × 10−11 M). The DNA sensor was tested on commercial doxorubicin formulations and on artificial samples the mimicked electrolyte content of human serum

    Electrochemical DNA Sensors with Layered Polyaniline—DNA Coating for Detection of Specific DNA Interactions

    No full text
    A DNA sensor has been proposed on the platform of glassy carbon electrode modified with native DNA implemented between two electropolymerized layers of polyaniline. The surface layer was assembled by consecutive stages of potentiodynamic electrolysis, DNA drop casting, and second electrolysis, which was required for capsulation of the DNA molecules and prevented their leaching into the solution. Surface layer assembling was controlled by cyclic voltammetry, electrochemical impedance spectroscopy, atomic force, and scanning electron microscopy. For doxorubicin measurement, the DNA sensor was first incubated in the Methylene blue solution that amplified signal due to DNA intercalation and competition with the doxorubicin molecules for the DNA binding sites. The charge transfer resistance of the inner layer interface decreased with the doxorubicin concentration in the range from 1.0 pM to 0.1 μM (LOD 0.6 pM). The DNA sensor was tested for the analysis of spiked artificial urine samples and showed satisfactory recovery in concentration range of 0.05–10 μM. The DNA sensor developed can find application in testing of antitumor drugs and some other DNA damaging factors

    Potentiometric Sensor Based on Layered Pillar[6]arene—Copper Composite

    No full text
    A solid-contact potentiometric sensor has been developed on the basis of glassy carbon electrode covered with electropolymerized polyaniline and alternatively layered pillar[6]arene and Cu2+ ions films. The assembly of the surface layer was confirmed by surface plasmon resonance measurements. The number of deposited layers was selected to reach better analytical characteristics for Cu2+ determination. It was shown that better results were achieved by using five layers, the upper one consisting of the macrocycle. The addition of covering layers for polyelectrolytes (Nafion, poly(styrene sulfonate)) and Cu2+ ions did not improve sensor performance. The potentiometric sensor made it possible to determine Cu2+ ions in neutral and weakly acidic media with a linear range of the concentrations, from 3.0 μM to 10.0 mM (limit of detection 3.0 μM). The applicability of the sensor in real sample assays was confirmed by the determination of Cu2+ ions in copper vitriol, Bordeaux mixture, and polyvitamin-mineral pills of “Complivit” during an atomic emission spectroscopy analysis

    Solid-Contact Potentiometric Sensors and Multisensors Based on Polyaniline and Thiacalixarene Receptors for the Analysis of Some Beverages and Alcoholic Drinks

    No full text
    Electronic tongue is a sensor array that aims to discriminate and analyze complex media like food and beverages on the base of chemometrics approaches for data mining and pattern recognition. In this review, the concept of electronic tongue comprising of solid-contact potentiometric sensors with polyaniline and thacalix[4]arene derivatives is described. The electrochemical reactions of polyaniline as a background of solid-contact sensors and the characteristics of thiacalixarenes and pillararenes as neutral ionophores are briefly considered. The electronic tongue systems described were successfully applied for assessment of fruit juices, green tea, beer, and alcoholic drinks They were classified in accordance with the origination, brands and styles. Variation of the sensor response resulted from the reactions between Fe(III) ions added and sample components, i.e., antioxidants and complexing agents. The use of principal component analysis and discriminant analysis is shown for multisensor signal treatment and visualization. The discrimination conditions can be optimized by variation of the ionophores, Fe(III) concentration, and sample dilution. The results obtained were compared with other electronic tongue systems reported for the same subjects
    corecore